
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Functional Extensionality for Refinement Types

NIKI VAZOU, IMDEA Software Institute, Spain

MICHAEL GREENBERG, Pomona College, USA

Refinement type checkers are a powerful way to reason about functional programs. For example, one can prove

properties of a slow, specification implementation, porting the proofs to an optimized implementation that

behaves the same. Without functional extensionality, proofs must relate functions that are fully applied. When

data itself has a higher-order representation, fully applied proofs face serious impediments! When working

with first-order data, fully applied proofs lead to noisome duplication when using higher-order functions.

While dependent type theories are typically consistent with functional extensionality axioms, SMT-backed

refinement type systems with type inference treat naïve phrasings of functional extensionality inadequately,

leading to unsoundness. We show how to extend a refinement type theory with a type-indexed propositional

equality that is adequate for SMT. We implement our theory in PEq, a Liquid Haskell library that defines

propositional equality and apply PEq to several small examples and two larger case studies. Our implementation

proves metaproperties inside Liquid Haskell itself using an unnamed folklore technique, which we dub ‘classy

induction’.

Additional Key Words and Phrases: refinement types, function equality, function extensionality

1 INTRODUCTION
Refinement types have been extensively used to reason about functional programs [Constable

and Smith 1987; Rondon et al. 2008; Rushby et al. 1998; Swamy et al. 2016; Xi and Pfenning 1998].

Higher-order functions are a key ingredient of functional programming, so reasoning about function

equality within refinement type systems is unavoidable. For example, Vazou et al. [2018a] prove

function optimizations correct by specifying equalities between fully applied functions. Do these

equalities hold in the context of higher order function (e.g., maps and folds) or do the proofs need

to be redone for each fully applied context? Without functional extensionality (a/k/a funext), one

must duplicate proofs for each higher-order function. Worse still, all reasoning about higher-order

representations of data requires first-order observations.

Most verification systems allow for function equality by way of functional extensionality, either

built-in (e.g., Lean) or as an axiom (e.g., Agda, Coq). Liquid Haskell and F
∗
, two major, SMT-based

verification systems that allow for refinement types, are no exception: function equalities come up

regularly. But, in both these systems, the first attempt to give an axiom for functional extensionality

was inadequate,
1
A naïve funext axiom unsoundly proves equalities between unequal functions.

Our first contribution is to expose why a naïve function equality encoding is inadequate (§2). At

first sight, function equality can be encoded as a refinement type stating that for functions f and g,

if we can prove that f x equals g x for all x, then the functions f and g are equal:

funext :: ∀ a b. f:(a → b) → g:(a → b) → (x:a → {f x == g x}) → {f == g}

(The ‘refinement proposition’ {e} is equivalent to {_:() | e}.) On closer inspection, funext does

not encode function equality, since it is not reasoning about equality on the domains of the functions.

What if type inference instantiates the domain type parameter a’s refinement to an intersection of

the domains of the input functions or, worse, to an uninhabited type? Would such an instantiation

of funext still prove equality of the two input functions? We explore the inadequacy of this naïve

1
See https://github.com/FStarLang/FStar/issues/1542 for F

∗
’s initial, inadequate encoding and the corresponding unsound-

ness. The Liquid Haskell case is elaborated in §2. See §7 for a discussion of F
∗
’s different solution.

Authors’ addresses: Niki Vazou, niki.vazou@imdea.org, IMDEA Software Institute, Madrid, Spain; Michael Greenberg,

michael.greenberg@pomona.edu, Pomona College, Claremont, CA, USA.

https://github.com/FStarLang/FStar/issues/1542

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Niki Vazou and Michael Greenberg

extensionality axiom in detail (§2). We work in Liquid Haskell, but the problem generalizes to any

refinement type system that allows for polymorphism, semantic subtyping, and refinement type

inference. Sound proofs of function equality must carry information about the domain type on

which the compared functions are considered equal.

Our second contribution is to formalize λRE , a core calculus that circumvents the inadequacy

of the naïve encoding (§3). We prove that λRE ’s refinement types and type-indexed, functionally

extensional propositional equality is sound; propositional equality implies equality in a term model.

Our third contribution is to implement λRE as a Liquid Haskell library (§4). We implement λRE ’s
type-indexed propositional equality using Haskell’s GADTs and Liquid Haskell’s refinement types.

We call the propositional equality PEq and find that it adequately reasons about function equality.

Further, we prove in Liquid Haskell itself that the implementation of PEq is an equivalence relation,

i.e., it is reflexive, symmetric, and transitive. To conduct these proofs—which go by induction on the

structure of the type index—we applied an heretofore-unnamed folklore proof methodology, which

we dub classy induction. Classy induction encodes theorems as typeclass definitions, where proofs

by induction on types give an instance definition for each case of the inductive proof (§4.2; §7).

Our fourth and final contribution is to use PEq to prove equalities between functions (§5; §6). As

simple examples, we prove optimizations correct as equalities between functions (i.e., reverse),

work carefully with functions that only agree on certain domains and dependent ranges, lift

equalities to higher-order contexts (i.e., map), prove equivalences with multi-argument higher-order

functions (i.e., fold), and showcase how higher-order, propositional equalities can co-exist with and

speedup executable code. We also provide two more substantial case studies, proving the monoid

laws for endofunctions and the monad laws for reader monads.

2 THE PROBLEM: NAIVE FUNCTION EXTENSIONALITY IS INSOLUBLE
Refinement types, as used for theorem proving [Vazou et al. 2018a], work naturally with first-order

equalities. For instance, consider two functions h and k with equable ranges and a lemma that

encodes that for each input x the functions h and k return the same result.
2

h, k :: Eq b => a → b lemma :: x:a → { h x == k x }

An instantiation of the above lemma might express that fast and slow implementations of the

same algorithm (e.g., list reversal) return the same output for every input. Since programmers care

about performance, such optimization statements are common in refinement typing. Proving such

a lemma justifies substituting fast implementations for slow ones—either manually or via rewrites

in GHC using the rules pragma [Peyton Jones et al. 2001].

The equality expressed by lemma is more-or-less first-order, making use of Eq b. Without func-

tional extensionality, we cannot lift the equality in lemma to a higher ordering setting, e.g., we can’t

show that common higher-order functions, like map :: (a → b) → [a] → [b] or first ::

(a → b) → (a,c) → (b,c) behave equivalently when applied to h or k, even though we know

that h and k behave the same on all inputs. As it stands, to prove statements like map h xs ==

map k xs for all lists xs or first h p == first k p for all pairs p, one must duplicate the proof of

lemma in the context of map and first , respectively.

In the small, duplicated proofs are merely annoying. But in the large, duplicated proofs are

an engineering impediment, making it hard to iterate on designs, change implementations, or

introduce new operations. Without extensionality, it is hard—or even impossible—to do proofs

about higher-order definitions behind abstraction barriers, e.g., proving the monad laws for readers.

2
The (==) in the refinements represents SMT interpreted equality. In this paper (unlike the Liquid Haskell implementation)

we assume that (==) in the refinements also imposes the required Eq constraints. Haskell’s equality (==) appearing in code

is approximated by SMT equality using the assumed refinement type presented in §4.4.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Functional Extensionality for Refinement Types 3

In an ideal world we would be able to use lemma to derive that the functions h and k are equal in
any context, with no duplicated proofs at all. Liquid Haskell already has two kinds of equality,

but neither yields a meaningful function equality; concretely, that means we need: a syntax for

expressing function equality (§2.1), an axiom for proving function equality (we’ll use extensionality;

§2.2), and a system of checks that is adequate for function extensionality (§2.3).

2.1 Syntax of Equality between Functions in the Refinements.
We want to name and use equalities between functions in refinement types and proofs, but we must

be careful to distinguish our extensional equality from the definitional equalities found in SMT

and Haskell. So as a first step, we need a symbol that signifies that two functions are extensionally

equal. A single equal sign (=) is interpreted as SMT’s definitional equality; a double equal sign (==)

is interpreted as Haskell’s Eq instances’ computational equality. We use the symbol (⋍) to signify

a functionally extensional propositional equality. We leave ⋍ uninterpreted in SMT and without

computational interpretation in Haskell.

Function Equality in SMT. Function equality in the SMT world is flexible. The SMT-LIB stan-

dard [Barrett et al. 2010] defines the equality symbol = and does not explicitly forbid equality

between functions. In fact, CVC4 allows for function extensionality and higher-order reasoning [Bar-

bosa et al. 2019]. When Z3 compares functions for equality, it treats them as arrays, using the

extensional array theory to incompletely perform the comparison. When asked if two functions

are equal, Z3 typically answers unknown .

Function Equality in Haskell. Functional equality is, by default, unutterable in Haskell. Haskell’s

equality (==) has an Eq typeclass constraint: (==) :: Eq a => a → a → Bool. A sound, general

typeclass instance Eq (a → b) cannot be provided, since function equality isn’t computable.

Function Equality in Refinements. Here, we introduce (⋍) to denote a new, propositional equal-

ity that can relate functions. You can only write (⋍) in refinements because it does not have

computational content. Using separate syntax offers several advantages. First, we won’t confuse

our extensional equality with Haskell’s computational equality (==) or SMT equality (=). Sec-

ond, by distinguishing (⋍) from other notions of equality, we can leave our extensional equality

uninterpreted in SMT. Since different SMT implementations reason differently about function

equality, leaving ⋍ uninterpreted keeps function equality independent of the underlying SMT

implementation’s representation of functions.

2.2 Expressing of Naïve Function Extensionality
Equipped with a syntax for function equality in the refinements, the next step is to generate proofs

of f ⋍ g. We begin with a non-solution: simply adding an extensionality axiom. In short, a naïve

extensionality axiom loses type information that in turn leads to unsoundness. Our solution defines

a propositional equality that tracks the appropriate type information, using Eq at base types and

function extensionality at higher types (§3; §4).

Naïve Extensionality as a Refinement Type. A natural (but, unfortunately, inadequate) approach

is to encode functional extensionality (funext) as a refinement type whose postcondition generates

function equalities. We can express the extensionality axiom as a refinement type as follows:

funext :: Eq b => f:(a → b) → g:(a → b) → (x:a → {f x == g x}) → {f ⋍ g}

That is, given functions f and g and a proof that forall x, f x equals g x, then f is equal to g. (We

use (==) in the proof for now to avoid questions about base type equality.)

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Niki Vazou and Michael Greenberg

{-@ assume funext :: Eq b

=> f:(a → b) → g:(a → b) → (x:a → {f x == g x}) → {f ⋍ g} @-}

funext _f _g _pf = ()

{-@ allFunEq :: Eq b => h:(a → b) → k:(a → b) → {h ⋍ k} @-}

allFunEq h k = funext h k (_ → ())

{-@ reflect add1 @-}

add1 :: Int → Int

add1 x = x + 1

{-@ reflect add2 @-}

add2 :: Int → Int

add2 x = x + 2

{-@ unsound :: { add1 ⋍ add2 } @-}

unsound = allFunEq add1 add2

-- (⋍) is an SMT uninterpreted function

{-@ measure (⋍) :: a → a → Bool @-}

Fig. 1. Naïve extensionality proofs gone bad: a proof of add1 ⋍ add2 is marked SAFE by Liquid Haskell.

Extensionality can be assumed by the refinement system, but cannot be proved, i.e., we can’t

actually define a well typed implementation for funext. Type theory typically has to axiomatize

extensionality (or something stronger, like univalence). Refinement type systems need to use an

axiom, too. Why? First, there is no available value of type a to “unlock” the f x == g x proof

argument. And even if the f x == g x statement were available, it is not sufficient to generate the

f ⋍ g proof, since (⋍) is treated as uninterpreted in the logic. To give an uninterpreted symbol

any actual meaning in the SMT logic, one must use an axiom.

Using funext. If two functions produce equal outputs for each input, funext proves those

functions are equal. funext is easy enough to assume in Liquid Haskell (Figure 1, top). Unfortunately,

this naïve framing is inadequate and leads to unsound proofs (Figure 1, unsound). Why?

The naïve extensionality axiom loses critical information. Type inference will select a refinement

of false for allFunEq ’s domain (Figure 1), as it is the strongest possible type given the constraints—

we explain the details below. All functions with a trivial domain are equal, so the inadequate

funextproves that arbitrary h and k are equal. Finally, allFunEq is used by unsound to equate two

clearly unequal functions: one increases its argument by 1 and the other by 2!

2.3 Refinement Type Checking of Naïve Function Extensionality is Inadequate
The naïve extensionality axiom leads to unsoundness (Figure 1) due to an interaction with type

inference and subtyping. In order to explain the issue, we abstract our concrete Liquid Haskell

counterexample into a generic refinement type checking system with semantic subtyping (basing

concrete details on Liquid Haskell, though other systems work similarly [Barthe et al. 2015; Knowles

and Flanagan 2010]). Consider two functions h and k of type α → β with different domain (dh/dk)
and range (rh/rk) refinements.

3
Suppose we’ve proved a lemma lemma that proves some property p

relating h and k for all x of type α :

h :: x : {v : α | dh} → {v : β | rh}

k :: x : {v : α | dk} → {v : β | rk} lemma :: x : α → {p}

3
We are indeed considering a heterogeneous equality—a natural possibility when using unrefined types (as in the naïve

extensionality axiom). Our solution indexes our propositional equality by type (§3).

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Functional Extensionality for Refinement Types 5

What might the predicate p be? We could define p as h x == k x , i.e., h and k produce equal results

even outside their prescribed domains. Alternatively, we could restrict p, saying dh => h x == k x ,
i.e., the two functions are equal only on h’s domain, {v : α | dh}.

Using our naïve extensionality axiom, funext, we produce an equality between the two functions:

theoremEq :: { h ⋍ k }

theoremEq = funext h k lemma

If funext adequately captures functional extensionality, theoremEq should pass the refinement

type checker iff lemma correctly showed equalities between the results of h and k on all inputs.

The critical question is: which inputs x should we consider? In our statement of lemma, we
leave the type of x unrefined—a bare α . By refining α or restricting p, we can restrict the set of

xs we consider. The way Liquid Haskell implements semantic subtyping leads to a bad situation:

funext h k lemma passes the refinement type checker iff lemma proves first-order equality of the

functions h and k on some subset of their domains. Liquid Haskell will choose the smallest subset

possible—{v : α | false}—and so calls to funext trivially pass. How does this happen?

Desugaring Calls to Extensionality. First, we desugar type inference and typeclass instantiation.

After desugaring, the explicit theoremEq looks like the following:

theoremEq :: { h ⋍ k }

theoremEq = funext @{v : α | κα } @{v : β | κβ } d h k lemma

The instantiated types α and β are inferred by GHC using its ordinary, unrefined type inference; the

dictionary d for the Eq b constraint is inferred by GHC using typeclass elaboration and constraint

solving. Liquid Haskell (but not F
∗
) will infer refinements for the type variables, refining the α and

β to {v : α | κα } and {v : β | κβ }, where κα and κβ are refinement variables to be resolved during

liquid type inference [Rondon et al. 2008].

The core issue, explained at length below, is that these refinement variables will be set to false.
So {v : α | κα } and {v : β | κβ } will be trivial, empty types. But all functions to and from empty

types are equivalent... meaning lemma is irrelevant! Worse still, theoremEq proves a general equality

between h and k, which can be used outside of the (trival) type at which it was proved, leading to

unsoundness (Figure 1, allFunEq , unsound).

Checking Desugared Calls. After type inference and desugaring, the desugared call is given to

the refinement type checker. The derivation is not uncomplicated (see Appendix A, Figure 11 for a

full derivation), but at core it only involves invoking basic expression and type application rules,

with a few subtyping derivations (Sub-* of Figure 2).

Figure 2 presents the structure of derivation tree that reduces type checking of theoremEq to three

subtyping rules; we name these subderivations Sub-H, Sub-K, and Sub-L. The expression-level

application rule we use is nearly the usual dependent one; the only wrinkle is subtyping, which

isn’t always present in dependent type systems (Figure 5, T-App).

Refinement Subtyping. There are three uses of subtyping in play here: we name the derivations

Sub-H, Sub-K, and Sub-L. All of them are instances of subtyping on function types, which uses the

standard contravariant subtyping rule (Figure 2, top, Sub-Fun).

Subtyping on refined types reduces to implication checking: to find Γ ⊢ {v : α | r1} ⪯ {v : α | r2}

the top-level refinements in Γ, together with the refinement r1 of the left-hand-side should imply the

refinement r2 of the right-hand-side. We write the implications to be checked using⇒; implication

checks appear at the leaves of every subtyping derivation (Figure 2, top, Sub-B).

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Niki Vazou and Michael Greenberg

Sybtyping Rules

“top-level-refinements of Γ” ∧ r1 ⇒ r2

Γ ⊢ {v : α | r1} ⪯ {v : α | r2}
Sub-B

Γ ⊢ τ ′x ⪯ τx Γ,x : τ ′x ⊢ τ ⪯ τ ′

Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′
Sub-Fun

Subtyping Derivation Leaves

κα ⇒ dh

Γ ⊢ {v : α | κα } ⪯ {v : α | dh}

κα ⇒ rh ⇒ κβ

Γ,x : {v : α | κα } ⊢ {v : β | rh} ⪯ {v : β | κβ }

Γ ⊢ x : {v : α | dh} → {v : β | rh} ⪯ {v : α | κα } → {v : β | κβ }
Sub-H

κα ⇒ dk

Γ ⊢ {v : α | κα } ⪯ {v : α | dk}

κα ⇒ rk ⇒ κβ

Γ,x : {v : α | κα } ⊢ {v : β | rk} ⪯ {v : β | κβ }

Γ ⊢ x : {v : α | dk} → {v : β | rk} ⪯ {v : α | κα } → {v : β | κβ }
Sub-K

κα ⇒ true

Γ ⊢ {v : α | κα } ⪯ α

κα ⇒ p ⇒ h x == k x

Γ,x : {v : α | κα } ⊢ {p} ⪯ {h x == k x}

Γ ⊢ x : α → {p} ⪯ x : {v : α | κα } → {h x == k x}
Sub-L

Definitions

τд � {v : α | κα } → {v : β | κβ }

Γ � { funext : ∀a b .Eq b ⇒ f : (a → b) → д : (a → b) → (x : a → { f x == д x}) → { f ⋍ д}
, h : x : {v : α | dh} → {v : β | rh}, k : x : {v : α | dk} → {v : β | rk}
, lemma : x : α → {p}, d : Eq α }

Derivation Structure

Sub-H . . .

Γ ⊢ e :: д:τд → (x : {v : α | κα } → {h x == д x}) → {h ⋍ д} Sub-K . . .

Γ ⊢ e k :: (x : {v : α | κα } → {h x == k x}) → {h ⋍ k} Sub-L . . .

Γ ⊢ funext @{v : α | κα } @{v : β | κβ } d h︸ ︷︷ ︸
e

k lemma :: {h ⋍ k}

Fig. 2. Part of type checking of naïve extensionality in theoremEq (see full in Appendix Fig. 11).

Implication Checking. Collecting the implications from the subtyping derivations (Figure 2, rules

Sub-H, Sub-K, and Sub-L), the checks done for theoremEq amount to checking the validity of a

relatively small set of implications:

(1) κα ⇒ dh (2) κα ⇒ dk (3) κα ⇒ true
(4) κα ⇒ rh ⇒ κβ (5) κα ⇒ rk ⇒ κβ (6) κα ⇒ p ⇒ h x == k x

The predicates dh and dk represent the functions’ domains, rh and rk represent the functions’ ranges,
and p captures the first order equality predicate. The variables κα and κβ are the refinements on

the domain and range of the instantiation of funext, the naïve extensionality axiom.

On the surface, the implication system seems like a good encoding. Implications (1) and (2)

ensures κα is at least as restrictive as the two functions’ domains. Assuming κα , implications (4)

and (5) assign to ensure κβ is at least as inclusive as the two functions’ ranges. So far, so good:

we’ve correctly implemented contravariance of functions. Finally, implication (6) requires that κα
and the property p jointly imply first order equality of the two applications, h x == k x . To sum

up: if we can find a common domain, the implication system will check that every application of

the two functions on that domain yields equal results. If the domains dk and dh unify to κα , the

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Functional Extensionality for Refinement Types 7

implication system adequately checks function extensionality. Unfortunately, type inference will

choose a meaningless domain. Later, we forget that choice of trivial domain and unsoundly apply

the equality at any domain.

The implication system has a trivial solution: set κα to false. Such a solution is valid: choosing

false as the subset of the two functions’ domains, the check always succeeds. Liquid type infer-

ence [Rondon et al. 2008] always returns the strongest solution for the refinement variables, and so

it will always set κα to false. Setting κα to false is natural enough in light of funext’s type. The
function domain α only appears in positive positions. Since functions are contravariant, funext
never actually touches a value of type α—so Liquid Haskell (soundly!) infers the strongest possible

refinement, setting κα to false meaning that a value of such type is never actually used.

Type Level Interpretation of Trivial Domains. Our use of naïve extensionality is inadequate: it

relates all functions and doesn’t mean much, since we’re finding equality on a trivial, empty domain.

Extensionality doesn’t generate any inconsistency or unsoundness itself: arbitrary functions h
and k really are equal on the empty domain. Rather, when we try to use theoremEq , unsoundness

strikes: we have h ≃ k with nothing to remark on the (trivial!) types at which they’re equal. Any

use of theoremEq will freely substitute h for k at any domain.

To address this problem, the type variable α representing the unified domain of the functions to

be checked for equality should appear in a negative position to exclude trivial domains. In other

words, function equality cannot be expressed as a mere refinement, but must be expressed as a

type that also records the domains on which the functions are equal.

3 THE SOLUTION: EXPLICIT ENCODING OF TYPED EQUALITY
We formalize a core calculus λRE with Refinement types and type-indexed propositional Equality.
First, we define the syntax and dynamic semantics of the language (§3.1). Next, we define the typing

judgement and a logical relation characterizing equivalence of λRE expressions (§3.2.1). Finally,

we prove that λRE is semantically sound, and that both the logical relation and the propositional

equality satisfy the three equality axioms (§3.3).

3.1 Syntax and Semantics of λRE

λRE is a core calculus with Refinement types extended with typed Equality primitives (Figure 3).

Expressions. Expressions of λRE include constants for booleans, unit, and equality on base types,

variables, lambda abstraction, and application. The expressions also include two primitives to prove

propositional equality: we use bEqb to construct proofs of equality at base types and xEqx :τx→τ
to construct proofs of equality at function types. Equality proofs take three arguments: the two

expressions equated and a proof of their equality; proofs at base type are trivial, of type (), but
higher types use functional extensionality.

Values. The values of λRE are constants, functions, and equality proofs with converged proofs.

Types. The base types of λRE are booleans and unit. These types aren’t used directly; we always

refine them with boolean expressions r in refinement types {x :b | r }, which denote all expressions

of base type b that satisfy the refinement r . Types of λRE also include dependent function types

x :τx → τ with arguments of type τx and result type τ , where τ can refer back to the argument x .
Finally, types include our propositional equality PEqτ {e1} {e2}, which denotes a proof of equality

between the two expressions e1 and e2 of type τ . We write b to mean the trivial refinement type

{x :b | true}. To keep our formalism and metatheory simple, we omit polymorphic types; we could

add them following Sekiyama et al. [2017].

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Niki Vazou and Michael Greenberg

Constants c ::= true | false | unit | (==b)

Expressions e ::= c | x | e e | λx :τ . e | bEqb e e e | xEqx :τ→τ e e e

Values v ::= c | λx :τ . e | bEqb e e v | xEqx :τ→τ e e v

Refinements r ::= e

Basic Types b ::= Bool | ()

Types τ ::= {x :b | r } | x :τ → τ | PEqτ {e} {e}

Typing Environment Γ ::= ∅ | Γ,x : τ

Closing Substitutions θ ::= ∅ | θ ,x 7→ v

Equivalence Environment δ ::= ∅ | δ , (v,v)/x

Evaluation Context E ::= • | E e | v E | bEqb e e E | xEqx :τ→τ e e E

Reduction e ↪→ e

E[e] ↪→ E[e ′], if e ↪→ e ′ [ctx]

(λx :τ . e) v ↪→ e[v/x] [β]
(==b) c1 ↪→ (==(c1,b)) [eq1]

(==(c1,b)) c2 ↪→ c1 = c2, syntactic equality on two constants [eq2]

Fig. 3. Syntax and Dynamic Semantics of λRE .

[| {x :b | r } |] � {e | e ↪→∗ v∧ ⊢B e ::b ∧ r [e/x] ↪→∗ true}
[|x :τx → τ |] � {e | ∀ex ∈ [|τx |]. e ex ∈ [|τ [ex /x] |]}

[| PEqb {el } {er } |] � {e | ⊢B e :: PBEqb ∧ e ↪→∗ bEqb el er epf ∧ el ==b er ↪→
∗ true}[

| PEqx :τx→τ {el } {er } |
]
� {e | ⊢B e :: PBEq ⌊x :τx→τ ⌋ ∧ e ↪→∗ xEq

_
el er epf

∧ el , er ∈ [|x :τx → τ |]
∧ ∀ex ∈ [|τx |] .epf ex ∈

[
| PEqτ [ex /x] {el ex } {er ex } |

]
}

Fig. 4. Semantic typing: a unary syntactic logical relation interprets types.

Environments. The typing environment Γ binds variables to types, the (semantic typing) closing

substitutions θ binds variables to values, and the (logical relation) pending substitutions δ binds

variables to pairs of equivalent values.

Runtime Semantics. The relation · ↪→ · evaluates λRE expressions using contextual, small step,

call-by-value semantics (Figure 3, bottom). The semantics are standard with bEqb and xEqx :τx→τ
evaluating proofs but not the equated terms. Let · ↪→∗ · be the reflexive, transitive closure of · ↪→ ·.

Type Interpretations. Semantic typing uses a unary logical relation to interpret types in a syntactic

term model (Figure 4). We extend it to open terms using closing substitutions (Figure 5).

The interpretation of the base type {x :b | r } includes all expressions which yield b-constants
c that satisfy the refinement, i.e., r evaluates to true on c . To decide the unrefined type of an

expression we use the relation ⊢B e ::b (defined in §B.1). The interpretation of function types

x :τx → τ is logical: it includes all expressions that yield τ -results when applied to τx arguments

(carefully tracking dependency). The interpretation of base-type equalities PEqb {el } {er } includes
all expressions that satisfy the basic typing (PBEqτ is the unrefined version of PEqτ {el } {er }) and
reduce to a basic equality proof whose first arguments reduce to equal b-constants. Finally, the
interpretation of the function equality type PEqx :τx→τ {el } {er } includes all expressions that satisfy

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Functional Extensionality for Refinement Types 9

the basic typing (based on the ⌊·⌋ operator; §B.1). These expressions reduce to a proof (noted

as xEq
_
, since the type index does not need to be syntactically equal to the index of the type)

whose first two arguments are functions of type x :τx → τ and the third proof argument takes τx
arguments to a equality proofs of type PEqτ [ex /x] {el ex } {er ex }.

Constants. For simplicity in λRE the constants are only the two boolean values, unit, and equality

operators for the two base types. For each base type b, we define the type indexed “computational”

equality ==b . For two constants c1 and c2 of basic type b, c1 ==b c2 evaluates in one step to

(==(c1,b)) c2, which then steps to true when c1 and c2 are the same and false otherwise.
Each constant c is assigned the type TyCons(c). We assign selfified types to true, false, and

unit (e.g., {x :Bool | x ==Bool true}) [Ou et al. 2004]. Equality is given a similarly reflective type:

TyCons(==b) � x :b → y:b → {z:Bool | z ==Bool (x ==b y)}.

Our system could be extended with any constant c , such that c ∈ [| TyCons(c) |] (Theorem B.1).

3.2 Static Semantics of λRE

Next, we define the static semantics of λRE as given by syntactic typing judgements (§3.2.1) and a

binary logical relation characterizing equivalence (§3.2.2).

3.2.1 Typing of λRE . We define three mutually recursive judgements for λRE (Figure 5):

Typing: Γ ⊢ e :: τ when the expression e has type τ in the typing environment Γ.
Well formedness: Γ ⊢ τ when the type τ is well formed in the typing environment Γ.
Subtyping: Γ ⊢ τl ⪯ τr when an expression with type τl can be safely used at type τr .

Type Checking. Most of the type checking rules are standard [Knowles and Flanagan 2010; Ou

et al. 2004; Rondon et al. 2008]; the T-Eq-Base and T-Eq-Fun rules assign types to proofs of equality.

The rule T-Eq-Base assigns to the expression bEqb el er e the type PEqb {el } {er }. To do so,

there must be invariant types τl and τr that fit el and er , respectively. Both these types should be

subtypes of b that are strong enough to derive that if l : τl and r : τr , then the proof argument

e has type {_:() | l ==b r }. One might expect the proof of equality to be in terms of el and er
themselves rather than general values l and r at invariant types. While we allow selfified types

(rule T-Self), our formal model leaves it to the programmer to give strong, meaningful types to

terms in proofs of equality. In an implementation like Liquid Haskell, type inference [Rondon et al.

2008] and reflection [Vazou et al. 2018b] automatically derive such strong types.

The rule T-Eq-Fun gives the expression xEqx :τx→τ el er e type PEqx :τx→τ {el } {er }. As for
T-Eq-Base, we use invariant types τl and τr to stand for el and er such that with l : τl and r : τr , the
proof argument e should have type x :τx → PEqτ {l x} {r x}, i.e., it should prove that l and r are
extensionally equal. We require that the index x :τx → τ is well formed as technical bookkeeping.

Well Formedness. The well formedness rule WF-Base checks that the refinement of a base type is

a boolean expression. The rule WF-Fun checks that the argument of a function type is well formed

and the result is well formed and uses the argument correctly. Finally, the rule WF-Eq checks that

the equality type PEqτ {el } {er } is well formed, by checking that the index type τ is well formed

and that both expressions el and er have type τ .

Subtyping. The rule S-Base reduces subtyping of basic types to set inclusion on the interpretation

of these types (Figure 4). Concretely, for all closing substitutions (as inductively defined by rules

C-Empty and C-Subst) the interpretation of the left hand side type should be a subset of the

right hand side type. The rule S-Fun implements the usual (dependent) contravariant function

subtyping. Finally, S-Eq reduces subtyping of equality types to subtyping of the type indexes, while

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Niki Vazou and Michael Greenberg

Type checking Γ ⊢ e :: τ

Γ ⊢ e :: τ Γ ⊢ τ ⪯ τ ′

Γ ⊢ e :: τ ′
T-Sub

Γ ⊢ e :: {z:b | r }

Γ ⊢ e :: {z:b | z ==b e}
T-Self

Γ ⊢ c :: TyCons(c)
T-Con

x : τ ∈ Γ

Γ ⊢ x :: τ
T-Var

Γ,x : τx ⊢ e :: τ Γ ⊢ τx

Γ ⊢ λx :τx . e :: x :τx → τ
T-Lam

Γ ⊢ e :: x :τx → τ Γ ⊢ ex :: τx

Γ ⊢ e ex :: τ [ex/x]
T-App

Γ ⊢ el :: τl Γ ⊢ er :: τr Γ ⊢ τl ⪯ {x :b | true} Γ ⊢ τr ⪯ {x :b | true}
Γ, l : τl , r : τr ⊢ e :: {x :() | l ==b r }

Γ ⊢ bEqb el er e :: PEqb {el } {er }
T-Eq-Base

Γ ⊢ el :: τl Γ ⊢ er :: τr Γ ⊢ τl ⪯ x :τx → τ Γ ⊢ τr ⪯ x :τx → τ
Γ, l : τl , r : τr ⊢ e :: (x :τx → PEqτ {l x} {r x}) Γ ⊢ x :τx → τ

Γ ⊢ xEqx :τx→τ el er e :: PEqx :τx→τ {el } {er }
T-Eq-Fun

Well-formedness ⊢ Γ Γ ⊢ τ

⊢ ∅
WF-Empty

⊢ Γ Γ ⊢ τ

⊢ Γ,x : τ
WF-Bind

Γ ⊢ τ Γ ⊢ el :: τ Γ ⊢ er :: τ

Γ ⊢ PEqτ {el } {er }
WF-Eq

⌊Γ⌋,x : b ⊢B r :: Bool

Γ ⊢ {x :b | r }
WF-Base

Γ ⊢ τx Γ,x : τx ⊢ τ

Γ ⊢ x :τx → τ
WF-Fun

Subtyping Γ ⊢ τ ⪯ τ

∀θ ∈ [| Γ |] , [|θ · {x :b | r } |] ⊆ [|θ · {x ′
:b | r ′} |]

Γ ⊢ {x :b | r } ⪯ {x ′
:b | r ′}

S-Base

Γ ⊢ τ ′x ⪯ τx Γ,x : τ ′x ⊢ τ ⪯ τ ′

Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′
S-Fun

Γ ⊢ τ ⪯ τ ′ Γ ⊢ τ ′ ⪯ τ

Γ ⊢ PEqτ {el } {er } ⪯ PEqτ ′ {el } {er }
S-Eq

Semantic typing and closing substitutions θ ∈ [| Γ |] Γ |= e ∈ τ

∅ ∈ [| ∅ |]
C-Empty

v ∈ [|τ |] θ ∈ [| Γ[v/x] |]

x 7→ v,θ ∈ [|x : τ , Γ |]
C-Subst

Γ |= e ∈ τ
⇔

∀θ ∈ [| Γ |] , θ · e ∈ [|θ · τ |]

Fig. 5. Typing of λRE .

the expressions to be decided equal remain unchanged. Even though covariant treatment of the

type index would suffice for our metatheory, we treat the type index bivariantly to be consistent

with the implementation (§4) where the GADT encoding of PEq is bivariant. Our subtyping rule

allows equality proofs between functions with convertible domains and ranges (§5.2).

3.2.2 Equivalence Logical Relation for λRE . We define characterize equivalence with a term model

binary logical, lifting relations on closed values and expressions to an open relation (Figure 6).

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Functional Extensionality for Refinement Types 11

Value equivalence relation v ∼ v ::τ ; δ

c ∼ c :: {x :b | r }; δ � ⊢B c ::b ∧ δ1 · r [c/x] ↪→
∗ true ∧ δ2 · r [c/x] ↪→

∗ true
v1 ∼ v2 ::x :τx → τ ; δ � ∀v ′

1
∼ v ′

2
::τx ; δ . v1 v

′
1
∼ v2 v

′
2

::τ ; δ , (v ′
1
,v ′

2
)/x

v1 ∼ v2 :: PEqτ {el } {er };δ � δ1 · el ∼ δ2 · er ::τ ; δ

Expression equivalence relation e ∼ e ::τ ; δ

e1 ∼ e2 ::τ ; δ � e1 ↪→
∗ v1, e2 ↪→

∗ v2, v1 ∼ v2 ::τ ; δ

Open expression equivalence relation δ ∈ Γ Γ ⊢ e ∼ e ::τ

δ ∈ Γ � ∀x : τ ∈ Γ, δ1(x) ∼ δ2(x) ::τ ; δ
Γ ⊢ e1 ∼ e2 ::τ � ∀δ ∈ Γ, δ1 · e1 ∼ δ2 · e2 ::τ ; δ

Fig. 6. Definition of equivalence logical relation.

Instead of directly substituting in type indices, all three relations use pending substitutions δ , which
map variables to pairs of equivalent values.

Closed Value and Expression Equivalence Relations. The relation v1 ∼ v2 ::τ ; δ states that the

values v1 and v2 are related under the type τ with and pending substitutions δ . It is defined as a

fixpoint on types, noting that PEqτ {e1} {e2} is structurally larger than τ .
For the refinement types {x :b | r }, related values must be the same constant c . Further, this

constant should actually be a b-constant and it should actually satisfy the refinement r , i.e., substi-
tuting c for x in r should evaluate to true under either pending substitution (δ1 or δ2). Two values

of function type are equivalent when applying them to equivalent arguments yield equivalent

results. Since we have dependent types, we record the arguments in the pending substitution for

later substitution in the codomain. Two proofs of equality are equivalent when the two equated

expressions are equivalent in the logical relation at type-index τ . Since the equated expressions

appear in the type itself, they may be open, referring to variables in the pending substitution δ .
Thus we use δ to close these expressions, checking equivalent between δ1 · el and δ2 · er . Following
the proof irrelevance notion of refinement typing, the equivalence of equality proofs does not relate

the proof terms—in fact, it doesn’t even inspect the proofs v1 and v2.

Two closed expressions e1 and e2 are equivalent on type τ with equivalence environment δ ,
written e1 ∼ e2 ::τ ; δ , iff they respectively evaluate to equivalent values v1 and v2.

Open Expression Equivalence Relation. A pending substitution δ satisfies a typing environment Γ
when its bindings are related pairs of values. Two open expressions, with variables from a typing

environment Γ are equivalent on type τ , written Γ ⊢ e1 ∼ e2 ::τ , iff for each environment δ that

satisfies Γ, δ1 · e1 ∼ δ2 · e2 ::τ ; δ holds. The expressions e1 and e2 and the type τ might refer to

variables in the environment Γ. We use δ to close the expressions eagerly, while we close the type

lazily: we apply δ in the refinement and equality cases of the closed value equivalence relation.

3.3 Metaproperties: PEq is an Equivalence Relation
Finally, we show various metaproperties of our system. Theorem 3.1 proves soundness of syntactic

typing with respect to semantic typing. Theorem 3.2 proves that propositional equality implies

equivalence in the term model. Theorems 3.3 and 3.4 prove that both the equivalence relation and

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Niki Vazou and Michael Greenberg

propositional equality define equivalences i.e., satisfy the three equality axioms. All the proofs can

be found in Appendix B.

λRE is semantically sound: syntactically well typed programs are also semantically well typed.

Theorem 3.1 (Typing is Sound). If Γ ⊢ e :: τ , then Γ |= e ∈ τ .

The proof can be found in Theorem B.2; it goes by induction on the derivation tree. Our system could

not be proved sound using purely syntactic techniques, like progress and preservation [Wright

and Felleisen 1994], for two reasons. First, and most essentially, S-Base needs to quantify over

all closing substitutions and purely syntactic approaches flirt with non-monotonicity (though

others have attempted syntactic approaches in similar systems [Zalewski et al. 2020]). Second,

and merely coincidentally, our system does not enjoy subject reduction. In particular, S-Eq allows

us to change the type index of propositional equality, but not the term index. Why? Consider

λx :{x :Bool | true}. bEqBool x x () e such that e ↪→ e ′ for some e ′. The whole application has type

PEqBool {e} {e}; after we take a step, it has type PEqBool {e
′} {e ′}. Subject reduction demands that

the latter is a subtype of the former. We have PEqBool {e} {e} ⇒ PEqBool {e ′} {e ′}, so we could

recover subject reduction by allowing a supertype’s terms to parallel reduce (or otherwise convert)

to a subtype’s terms. Adding this condition would not be hard: the logical relations’ metatheory

already demands a variety of lemmas about parallel reduction, relegated to supplementary material

(Appendix C) to avoid distraction and preserve space for our main contributions.

Theorem 3.2 (PEq is Sound). If Γ ⊢ e :: PEqτ {e1} {e2}, then Γ ⊢ e1 ∼ e2 ::τ .

The proof (see Theorem B.13) is a corollary of the Fundamental Property (Theorem B.22), i.e., if

Γ ⊢ e :: τ then Γ ⊢ e ∼ e ::τ , which is proved in turn by induction on the assumed derivation tree.

Theorem 3.3 (The logical relation is an Eqality). Γ ⊢ e1 ∼ e2 ::τ is reflexive, symmetric,

and transitive:

• Reflexivity: If Γ ⊢ e :: τ , then Γ ⊢ e ∼ e ::τ .
• Symmetry: If Γ ⊢ e1 ∼ e2 ::τ , then Γ ⊢ e2 ∼ e1 ::τ .
• Transitivity: If Γ ⊢ e2 :: τ , Γ ⊢ e1 ∼ e2 ::τ , and Γ ⊢ e2 ∼ e3 ::τ , then Γ ⊢ e1 ∼ e3 ::τ .

Reflexivity is essentially the Fundamental Property. The other proofs proceed by structural induction

on the type τ (Theorem B.23). Transitivity requires reflexivity on e2, so we assume that Γ ⊢ e2 :: τ .

Theorem 3.4 (PEq is an Eqality). PEqτ {e1} {e2} is reflexive, symmetric, and transitive on

equable types. That is, for all τ that contain only basic types and functions:

• Reflexivity: If Γ ⊢ e :: τ , then there exists v such that Γ ⊢ v :: PEqτ {e} {e}.
• Symmetry: if Γ ⊢ v12 :: PEqτ {e1} {e2}, then there exists v21 such that Γ ⊢ v21 :: PEqτ {e2} {e1}.

• Transitivity: if Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3}, then there exists v13 such

that Γ ⊢ v13 :: PEqτ {e1} {e3}.

The proofs go by induction on τ (Theorem B.24). Reflexivity requires us to generalize the inductive

hypothesis to generate appropriate τl and τr for the PEq proofs.

4 IMPLEMENTATION: A GADT FOR TYPED PROPOSITIONAL EQUALITY
We defined propositional equality primitives for base and function types in Liquid Haskell as a

GADT (§4.1, Figure 7). Refinements on the GADT enforce the typing rules in our formal model (§3).

We used Liquid Haskell itself to establish some of our metatheory (§4.2).

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Functional Extensionality for Refinement Types 13

-- (1) Plain GADT

data PBEq :: * → * where

BEq :: Eq a => a → a → () → PBEq a

XEq :: (a → b) → (a → b) → (a → PEq b) → PBEq (a → b)

CEq :: a → a → PBEq a → (a → b) → PBEq b

-- (2) Proofs of uninterpreted equality between terms E1 and E2 of type a

{-@ type PEq a E1 E2 = {v:PBEq a | E1 ⋍ E2} @-}

{-@ measure (⋍) :: a → a → Bool @-}

-- (3) Type refinement of the GADT

{-@ data PBEq :: * → * where

BEq :: Eq a => x:a → y:a → {v:() | x == y} → PEq a {x} {y}

| XEq :: f:(a → b) → g:(a → b) → (x:a → PEq b {f x} {g x})

→ PEq (a → b) {f} {g}

| CEq :: x:a → y:a → PEq a {x} {y} → ctx:(a → b)

→ PEq b {ctx x} {ctx y} @-}

Fig. 7. Implementation of the propositional equality PEq as a refinement of Haskell’s GADT PBEq.

4.1 The PBEq GADT, its PEq Refinement, and the ⋍Measure
We define our type-indexed propositional equality PEq a {e1} {e2} in three steps (Figure 7): (1)

structure (à la λRE) as a GADT, (2) definition of the refined type PEq, and (3) proof construction via

a refinement of the GADT.

First, we define the structure of our proofs of equality as PBEq, an unrefined, i.e., Haskell, GADT

(Figure 7, (1)). The plain GADT defines the structure of derivations in our propositional equality

(i.e., which proofs are well formed), but none of the constraints on derivations (i.e., which proofs are

valid). There are three ways to prove our propositional equality, each corresponding to a constructor

of PBEq: using an Eq instance from Haskell (constructor BEq); using funext (constructor XEq); and
by congruence closure (constructor CEq).

Next, we define the refinement type PEq to be our propositional equality (Figure 7, (2)). We say

that two terms E1 and E2 of type a are propositionally equal when there (a) is a well formed and

valid PBEq proof and (b) we have E1 ⋍ E2, where (⋍) is an SMT, uninterpreted function symbol.

PEq is defined as a Liquid Haskell type alias that uses capital letters to indicate which formal type

parameters in type definitions are expressions, e.g., in type PEq a E1 E2 = ..., both E1 and E2
are expressions, but a is a type. Liquid Haskell uses curly braces to indicate which actual arguments

in type applications are expressions, e.g., in PEq a {x} {y}, both x and y are expressions, but a is

a type. Since (⋍) is uninterpreted, we can only get E1 ⋍ E2 from axioms or assumptions.

Finally, we refine the type constructors of PBEq to axiomatize the behaviour of (⋍) and generate

proofs of PEq (Figure 7, (3)). Each constructor of PBEq is refined to return something of type PEq,

where PEq a {e1} {e2} means that terms e1 and e2 are considered equal at type a. BEq constructs

proofs that two terms, x and y of type a, are equal when x == y according to the Eq instance for

a. The metatheory of Liquid Haskell has always assumed that Eq instances correspond to SMT

equality.
4 XEq is the funext axiom. Given functions f and g of type a → b, a proof of equality

4
This assumption is encoded as the refinement type for (==) of §4.4 and is not actually checked at instance definitions,

thus unsoundness might occur when Haskell’s Eq instances do not respect the equality axioms.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Niki Vazou and Michael Greenberg

-- (1) Refined typeclass

{-@ class Reflexivity a where

refl :: x:a → PEq a {x} {x} @-}

-- (2) Base case (Eq types)

instance Eq a => Reflexivity a where

refl a = BEq a a ()

-- (3) Inductive case (function types)

instance Reflexivity b => Reflexivity (a → b) where

refl f = XEq f f (\a → refl (f a))

Fig. 8. A proof of reflexivity using classy induction.

via extensionality also needs an PEq-proof that f x and g x are equal for all x of type a. Such a

proof has (unrefined) type a → PBEq b, with refined type x:a → PEq b {f x} {g x}. Critically,

we don’t lose any type information about f or g! CEq implements congruence closure (§ 4.3) x and

y of type a that are equal—i.e., PEq a {x} {y}—and an arbitrary context with an a-shaped hole

(ctx :: a → b), filling the context with x and y yields equal results, i.e., PEq b {ctx x} {ctx y}.

4.2 Equivalence Properties and Classy Induction
The metatheory in §3 establishes a variety of meaningful properties of our propositional equality.

We were surprised that we could prove some of these properties—reflexivity, symmetry, and

transitivity (Theorem 3.4)—within Liquid Haskell itself.

Just as our paper metatheory uses proofs that go by induction on types, our proofs in Liquid

Haskell also go by induction on types. But “induction” in Liquid Haskell means writing a recursive

function, which necessarily has a single, fixed type. We want a Liquid Haskell theorem refl ::

x:a → PEq a {x} {x} that corresponds to Theorem 3.4 (a), but the proof goes by induction on the

type a, which is not a thing an ordinary Haskell function could do.
5

The essence of our proofs is a folklore method we name classy induction (see §7 for the history).

To prove a theorem using classy induction on the PEq GADT, one must: (1) define a typeclass with

a method whose refined type corresponds to the theorem; (2) prove the base case for types with

Eq instances; and (3) prove the inductive case for function types, where typeclass constraints on

smaller types generate inductive hypotheses. All three of our proofs follow this pattern exactly.

Our proof of reflexivity is exemplary (Figure 8). For (1), the typeclass Reflexivity simply states

the desired theorem type, refl :: x:a → PEq a {x} {x}. For (2), BEq suffices to define the refl

method for those a with an Eq instance.6 For (3), XEq can show that f is equal to itself by using the

refl instance from the codomain constraint: the Reflexivity b constraint generates a method

refl :: x:b → PEq b {x} {x}. The codomain constraint corresponds exactly to the inductive

hypothesis on the codomain: we are doing induction!

At compile time, any use of refl x when x has type a asks the compiler to find a Reflexivity

instance for a. If a has an Eq instance, the proof of refl x will simply be BEq x x (), which SMT

checking can trivially discharge. If a is a function of type b → c, then the compiler will try to find

a Reflexivity instance for the codomain c—and if it finds one, generate a proof using XEq and c’s

proof. The compiler’s constraint resolver does the constructive proof for us, assembling a refl for

our chosen type. Just as our paper metatheory works only for a fixed model, our refl proofs only

work for types where the codomain bottoms out with an Eq instance.

5
A variety of GHC extensions provide ways to do case analysis on types: type families, TypeInType, Dynamic, and generics,

to name a few. Unfortunately, Liquid Haskell doesn’t support these extensions.

6
To define such a general instance, we enabled two GHC extensions: FlexibleInstances and UndecidableInstances.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Functional Extensionality for Refinement Types 15

Our proofs of symmetry and transitivity follow this pattern; both use congruence closure. The

proofs can be found in supplementary material [2020]. Here is the inductive case from symmetry:

instance Symmetry b => Symmetry (a → b) where

-- sym :: l:(a→b) → r:(a→b) → PEq (a→b) {l} {r} → PEq (a→b) {r} {l}

sym l r pf = XEq r l $ \a → sym (l a) (r a) (CEq l r pf ($ a) ? ($ a l) ? ($ a r)))

Here l and r are functions of type a → b and we know that l ⋍ r; we must prove that r ⋍ l.

We do so using: (a) XEq for extensionality, letting a of type a be given; (b) sym (l a) (r a) as the

IH on the codomain b on (c) CEq for congruence closure on l ⋍ r in the context ($ a). The last

step is the most interesting: if l is equal to r, then plugging them into the same context yields

equal results; as our context, we pick ($ a), i.e., \f → f a, showing that l a ⋍ r a; the IH on

the codomain b yields r a ⋍ l a, and extensionality shows that r ⋍ l, as desired.

4.3 Congruence Closure
The standard definition of contextual equivalence says that putting equivalent terms into a context

doesn’t affect the observable results. Not only do our equivalence-property proofs use CEq (e.g.,

Symmetry above), but so do other proofs about function equalities (e.g., the map function in §5.3).

Congruence closure is typically proved by induction on the expressions, i.e., following the cases

of the fundamental theorem of the logical relation. While classy induction allows us to perform

induction on types to prove meta-properties within the language, we have no way to perform

induction on terms in Liquid Haskell (Coq can; see discussion of Sozeau’s work in §7). Instead, we

axiomatize congruence closure with CEq, using a function to represent the enclosing context.

4.4 Adequacy with Respect to SMT
Liquid Haskell’s soundness depends on closely aligning Haskell and SMT concepts: numbers and

data structures port from Haskell to SMT more or less wholesale, while functions are encoded as

SMT integers and application is an axiomatized uninterpreted function. Equality is a particularly

important point of agreement: SMT and Liquid Haskell should believe the same things are equal!

We must be careful to ensure that PEq aligns correctly with the SMT solver.

Liquid Haskell now has three notions of equality (§2.1): primitive SMT equality (=), Haskell

Eq-equality (==), and our new propositional equality, PEq. Liquid Haskell conflates (=) and (==):

{-@ assume (==) :: Eq a => x:a → y:a → {v:Bool | v ⇔ x = y } @-}

For base types like Bool or Int, SMT and Haskell equality really do coincide (up to concerns about,

e.g., numerical overflow). Both hand-written and derived structural Eq instances on data types coin-

cide with SMT equality, too. From the metatheoretical formal perspective, the connection between

Haskell’s and SMT’s equality comes by the assumption that equality, as well as any Haskell function

that corresponds to an SMT-interpreted symbol, belongs to the semantic interpretation of its very

precise or selfified type [Knowles and Flanagan 2010; Ou et al. 2004]. That is, to prove a refinement

type system with equality sound, we assume (==) ∈ [|x : a → y : a → {v :Bool | v ⇔ x = y} |].
Unfortunately, custom notions of equality in Haskell can subvert the alignment. For example, an

AST might ignore location information for term equality. Or one might define a non-structural Eq

on a tree-based implementation of sets. Such notions of equality are benignly non-structural, but

won’t agree with the SMT solver’s equality. As a more extreme example, consider the following Eq

instance on functions that takes the principle of function extensionality a little too seriously:

instance (Bounded a, Enum a, Eq b) => Eq (a → b) where

f1 == f2 = all (\x → f1 x == f2 x) $ enumFromTo minBound maxBound

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Niki Vazou and Michael Greenberg

Liquid Haskell’s assumed type for (==) is unsound for these Eq instances.

Our equivalence relation PEq is built on Eq, so it suffers from these same sources of inadequacy.

The edge-case inadequacy of (==) has been acceptable so far, but PEq complicates the situation by

allowing equivalences between functions. Since Liquid Haskell encodes higher-order functions in a

numbering scheme, where each function translates to a unique number, the meaning of application

for each such numbered function is axiomatized. If we have PEq (a → b) {f} {g}, it would be

outright unsound to assume f = g in SMT: we encode f and g as different numbers! At the same

time, it ought to be the case that if Eq a and PEq a {e1} {e2}, then e1 == e2 and so e1 = e2.

In the long run, Haskell’s Eq class should not be assumed to coincide with SMT equality. For

now, Liquid Haskell continues to assume that PEq at Eq types implies SMT equality. Rather than

simply adding an axiom, though, we make the axiom a typeclass itself, called EqAdequate :

{-@ class Eq a => EqAdequate a where

toSMT :: x:a → y:a → PEq a {x} {y} → {x = y} @-}

instance Eq a => EqAdequate a where

toSMT _x _y _pf = undefined

The EqAdequate typeclass constraint lets us know exactly which proofs depend on Eq instances

being adequate. We use it in the base cases of symmetry and transitivity. For example:

instance EqAdequate a => Symmetry a where

-- sym :: l:a → r:a → PEq a {l} {r} → PEq a {r} {l}

sym l r pf = BEq r l (toSMT l r pf)

The call to toSMT transports the proof that l and r are equal into an SMT equality: toSMT l r pf

:: {l = r}. The SMT solver easily discharges BEq’s {r = l} obligation using {l = r}.

5 EXAMPLES
We demonstrate our propositional equality in a series of examples. We start by moving from simple

first-order equalities to equalities between functions (reverse , §5.1). Next, we show how PEq’s

type indices reason about refined domains and dependent ranges of functions (succ, §5.2). Proofs

about higher-order functions exhibit the CEq contextual equivalence axiom (map, §5.3). Next, we see

that our type-indexed equality plays well with multi-argument functions (foldl , §5.4). Finally, we

present how an equality proof can lead to more efficient code (spec, §5.5). To save space, we omit

the reflect annotations from the following code.

5.1 Reverse: from First-Order to Higher-Order Equality
Consider three candidate definitions of the list-reverse function (Figure 9, top): a ‘fast’ one in

accumulator-passing style (fastReverse), a ‘slow’ one in direct style (slowReverse), and a ‘bad’

one that returns the original list (badReverse).

First-Order Proofs. It is a relatively easy exercise in Liquid Haskell to prove a theorem relating

the two list reversals (Figure 9, bottom; Vazou et al. [2018a]). The final theorem reverseEq is a

corollary of a lemma and rightId , which shows that [] is a right identity for list append, (++). The

lemma is the core induction, relating the accumulating fastGo and the direct slowReverse . The

lemma itself uses the inductive lemma assoc to show associativity of (++).

Higher-Order Proofs. Plain SMT equality isn’t enough to prove that fastReverse and slowReverse

are themselves equal. We need functional extensionality: the XEq constructor of the PEq GADT.

{-@ reverseHO :: Eq a => PEq ([a] → [a]) {fastReverse} {slowReverse} @-}

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Functional Extensionality for Refinement Types 17

Two implementations (and one non-implementation) of reverse

fastReverse :: [a] → [a]

fastReverse xs = fastGo [] xs

fastGo :: [a] → [a] → [a]

fastGo acc [] = acc

fastGo acc (x:xs) = fastGo (x:acc) xs

badReverse :: [a] → [a]

badReverse xs = xs

slowReverse :: [a] → [a]

slowReverse [] = []

slowReverse (x:xs) = slowReverse xs ++ [x]

Proofs relating fastReverse and slowReverse

{-@ reverseEq :: Eq a => xs:[a] → { fastReverse xs == slowReverse xs } @-}

{-@ lemma :: Eq a => xs:[a] → ys:[a] → {fastGo ys xs == slowReverse xs ++ ys} @-}

{-@ assoc :: Eq a => xs:[a] → ys:[a] → zs:[a]

→ { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) } @-}

{-@ rightId :: Eq a => xs:[a] → { xs ++ [] == xs } @-}

reverseEq xs

= lemma xs []

? rightId (slowReverse xs)

lemma [] _ = ()

lemma (x:xs) ys = lemma xs (x:ys)

? assoc (slowReverse xs) [x] ys

assoc [] _ _ = ()

assoc (_:xs) ys zs = assoc xs ys zs

rightId [] = ()

rightId (_:xs) = rightId xs

Fig. 9. Reasoning about list reversal.

reverseHO = XEq fastReverse slowReverse reversePf

The inner reversePf shows fastReverse xs is propositionally equal to slowReverse xs for all xs:

{-@ reversePf :: Eq a => xs:[a] → PEq [a] {fastReverse xs} {slowReverse xs} @-}

There are several different styles to construct such a proof.

Style 1: Lifting First-Order Proofs. The first order equality proof reverseEq can be directly lifted

to propositional equality, using the BEq constructor.

{-@ reversePf1 :: Eq a => xs:[a] → PEq [a] {fastReverse xs} {slowReverse xs} @-}

reversePf1 xs = BEq (fastReverse xs) (slowReverse xs) (reverseEq xs)

Such proofs are unsatisfying, since BEq relies on SMT equality and imposes an Eq constraint.

Style 2: Inductive Proofs. Alternatively, inductive proofs can be directly performed in the proposi-

tional setting, eliminating the Eq constraint. To give a sense of the inductive propositional proofs,

we converted lemma into the following lemmaP lemma.

{-@ lemmaP :: (Reflexivity [a], Transitivity [a]) => rest:[a] → xs:[a]

→ PEq [a] {fastGo rest xs} {slowReverse xs ++ rest} @-}

lemmaP rest [] = refl rest

lemmaP rest (x:xs) =

trans (fastGo rest (x:xs)) (slowReverse xs ++ (x:rest)) (slowReverse (x:xs) ++ rest)

(lemmaP (x:rest) xs) (assocP (slowReverse xs) [x] rest)

The proof goes by induction and uses the Reflexivity and Transitivity properties of PEq encoded

as typeclasses (§4.2) along with assocP and rightIdP , the propositional versions of assoc and

rightId . These typeclass constraints propagate to the reverseHO proof, via reversePf2 .

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Niki Vazou and Michael Greenberg

{-@ reversePf2 :: (Reflexivity [a], Transitivity [a])

=> xs:[a] → PEq [a] {fastReverse xs} {slowReverse xs} @-}

reversePf2 xs = trans (fastReverse xs) (slowReverse xs ++ []) (slowReverse xs)

(lemmaP [] xs) (rightIdP (slowReverse xs))

Style 3: Combinations. One can combine the easy first order inductive proofs with the typeclass-

encoded properties (at the cost of requiring Eq). For instance below, refl sets up the propositional

context; lemma and rightId complete the proof.

{-@ reversePf3 :: (Reflexivity [a], Eq a)

=> xs:[a] → PEq [a] {fastReverse xs} {slowReverse xs} @-}

reversePf3 xs = refl (fastReverse xs) ? lemma xs [] ? rightId (slowReverse xs)

Bad Proofs. Soundly, we could not use any of these styles to generate a (bad) proof of neither PEq

([a] → [a]) {fastReverse} {badReverse} nor PEq ([a] → [a]) {slowReverse} {badReverse}.

5.2 Succ: Refined Domains and Dependent Ranges
Our propositional equality PEq, with standard refinement type checking, naturally reasons about

functions with refined domains and dependent ranges. For example, consider the functions succNat

and succInt that respectively return the successor of a natural and integer number.

succNat, succInt :: Integer → Integer

succNat x = if x >= 0 then x + 1 else 0

succInt x = x + 1

First, we prove that the two functions are equal on the domain of natural numbers:

{-@ type Natural = {x:Integer | 0 <= x } @-}

{-@ natDom :: PEq (Natural → Integer) {succInt} {succNat} @-}

natDom = XEq succInt succNat (\x → BEq (succInt x) (succNat x) ())

We can also reason about how each function’s domain affects its range. For example, we can prove

that both functions take Natural inputs to the same Natural outputs.

{-@ natRng :: PEq (Natural → Natural) {succInt} {succNat} @-}

natRng = XEq succInt succNat natRng'

{-@ natRng' :: Natural → PEq Natural (succInt x) (succNat x) @-}

natRng' x = BEq (succInt x) (succNat x) ()

Liquid Haskell’s type inference forces us to write natRng' as a separate, manually annotated term.

While natDom does not type check with the type of natRng , the above definition of natRng type

checks without refinement annotations on the range of succNat and succInt themselves.

Finally, we are also able to prove properties of the function’s range that depend on the inputs.

Below we prove that on natural arguments, the result is always increased by one.

{-@ depRng :: PEq (x:Natural → {v:Natural | v == x + 1}) {succInt} {succNat} @-}

depRng = dXEq succInt succNat depRng'

{-@ depRng' :: x:Natural → PEq {v:Natural | v == x + 1} (succInt x) (succNat x) @-}

depRng' x = BEq (succInt x) (succNat x) ()

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Functional Extensionality for Refinement Types 19

The proof uses dXEq, a dependent version of XEq that explicitly captures the range of functions in

an indexed, abstract refinement p and curries it in the result PEq type [Vazou et al. 2013].

{-@ assume dXEq :: ∀<p :: a → b → Bool>. f:(a → b) → g:(a → b)

→ (x:a → PEq b<p x> {f x} {g x}) → PEq (x:a → b<p x>) {f} {g} @-}

dXEq = XEq

Note that the above specification is assumed by our library, since Liquid Haskell can’t yet parame-

terize the definition of the GADT PEq with abstract refinements.

Equalities Rejected by Our System. Liquid Haskell correctly rejects various wrong proofs of

equality between the functions succInt and succNat . We highlight three:

{-@ badDom :: PEq (Integer → Integer) {succInt} {succNat} @-}

{-@ badRng :: PEq (Natural → {v:Integer | v < 0 }) {succInt} {succNat} @-}

{-@ badDRng :: PEq (x:Natural → {v:Integer | v == x + 2}) {succInt} {succNat} @-}

badDom expresses that succInt and succNat are equal for any Integer input, which is wrong, e.g.,

succInt (-2) yields -1, but succNat (-2) yields 0. Correctly constrained to natural domains,

badRng specifies a negative range (wrong) while badDRng specifies that the result is increased by 2

(also wrong). Our system rejects both with a refinement type error.

5.3 Map: Putting Equality in Context
Our propositional equality can be used in higher order settings: we prove that if f and g are

propositionally equal, then map f and map g are also equal. Our proofs use the congruence closure

equality constructor/axiom CEq.

Equivalence on the Last Argument. Direct application of CEq ports a proof of equality to the last

argument of the context (a function). For example, mapEqP below states that if two functions f and

g are equal, then so are the partially applied functions map f and map g.

{-@ mapEqP :: f:(a → b) → g:(a → b) → PEq (a → b) {f} {g}

→ PEq ([a] → [b]) {map f} {map g} @-}

mapEqP f g pf = CEq f g pf map

Equivalence on an Arbitrary Argument. To show that map f xs and map g xs are equal for all xs,

we use CEq with a context that puts f and g in a ‘flipped’ context. We name this context flipMap :

{-@ mapEq :: Eq a => f:(a → b) → g:(a → b) → PEq (a → b) {f} {g}

→ xs:[a] → PEq [b] {map f xs} {map g xs} @-}

mapEq f g pf xs = CEq f g pf (flipMap xs) ? mapFlipMap f xs ? mapFlipMap g xs

{-@ mapFlipMap :: Eq a => f:(a → b) → xs:[a] → { map f xs == flipMap xs f } @-}

mapFlipMap f xs = ()

flipMap xs f = map f xs

The mapEq proof relies on CEq using the flipped context; SMT will need to know that map f xs ==

flipMap xs f, which is explicitly proved by mapFlipMap . Liquid Haskell cannot infer this equality

in the higher order setting of the proof, where neither the function map nor flipMap are fully

applied. In supplementary material [2020] we provide an alternative proof of mapEq using the

typeclass-encoded properties of equivalence.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Niki Vazou and Michael Greenberg

Proof Reuse in Context. Finally, we use the natDom proof (§5.2) to illustrate how existing proofs

can be reused in the map context.

{-@ client :: xs:[Natural] → PEq [Integer] {map succInt xs} {map succNat xs} @-}

client = mapEq succInt succNat natDom

{-@ clientP :: PEq ([Natural] → [Integer]) {map succInt} {map succNat} @-}

clientP = mapEqP succInt succNat natDom

client proves that map succInt xs is equivalent to map succNat xs for each list xs of natural

numbers, while clientP proves that the partially applied functions map succInt and map succNat

are equivalent on the domain of lists of natural numbers.

5.4 Fold: Equality of Multi-Argument Functions
As an example of equality proofs on multi-argument functions, we show that the directly tail-

recursive foldl is equal to foldl', a foldr encoding of a left-fold via CPS. The first-order equiva-

lence theorem is expressed as follows:

theorem :: Eq b => (b → a → b) → b → [a] → ()

{-@ theorem :: Eq b => f:_ → b:b → xs:[a] → { foldl f b xs == foldl' f b xs } @-}

The proof relies on some outer reasoning and an inductive lemma. The outer reasoning turns

foldl' into foldr; the inductive lemma characterizes the actual invariant in play.

We lifted the first-order property into a multi-argument function equality by using XEq for all

but the last arguments and BEq for the last, as below:

{-@ foldEq :: Eq b => PEq ((b → a → b) → b → [a] → b) {foldl} {foldl'} @-}

foldEq = XEq foldl foldl' $ \f →

XEq (foldl f) (foldl' f) $ \b → XEq (foldl f b) (foldl' f b) $ \xs →

BEq (foldl f b xs) (foldl' f b xs) (theorem f b xs)

Interestingly, one can avoid the first-order proof, the Eq constraint, and the subsequent conversion

via BEq. We used the typeclass-encoded properties to directly prove foldl equivalence in the

propositional setting (à la Style 2 of §5.1), as expressed by theoremP below.

{-@ theoremP :: (Reflexivity b, Transitivity b) => f:(b → a → b) → b:b → xs:[a]

→ PEq b {foldl f b xs} {foldr (construct f) id xs b} @-}

The proof goes by induction and can be found in supplementary material [2020]. Here, we use

theoremP to directly prove the equivalence of foldl and foldl' in the propositional setting.

{-@ foldEqP :: (Reflexivity b, Transitivity b)

=> PEq ((b → a → b) → b → [a] → b) {foldl} {foldl'} @-}

foldEqP = XEq foldl foldl' $ \f →

XEq (foldl f) (foldl' f) $ \b → XEq (foldl f b) (foldl' f b) $ \xs →

trans (foldl f b xs) (foldr (construct f) id xs b) (foldl' f b xs)

(theoremP f b xs) (refl (foldl' f b xs))

Just like foldEq , the proof calls XEq for each but the last argument, replacing BEq with transitivity,

reflexivity, and the inner theorem in its propositional-equality form.

5.5 Spec: Function Equality for Program Efficiency
Finally, we present an example where function equality is used to soundly optimize runtimes.

Consider a critical function that, for soundness, can only run on inputs that satisfy a boolean,

verification friendly specification, spec, and a fastSpec as an alternative way to test spec.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Functional Extensionality for Refinement Types 21

spec, fastSpec :: a → Bool

critical :: x:{ a | spec x } → a

A client function can soundly call critical for any input x by performing the runtime

fastSpec x check, given a PEq proof that the functions fastSpec and spec are equal.

{-@ client :: PEq (a → Bool) {fastSpec} {spec} → a → Maybe a @-}

client pf x = if fastSpec x ? toSMT (fastSpec x) (spec x)

(EqCtx fastSpec spec pf (\x f → f x))

then Just (critical x)

else Nothing

If the toSMT call above was omitted, then the call in the then branch would generate a type error:

there is not enough information that critical ’s precondition holds. The toSMT call generates the

SMT equality that fastSpec x == spec x. Combined with the efficient runtime check fastSpec x,

the type checker sees that in the call to critical x is safe in the then branch.

This example showcases how our propositional, higher-order equality 1/ co-exists with practical

features of refinement types, e.g., path sensitivity, and 2/ is used to optimize executable code.

6 CASE STUDIES
We present two case studies of our propositional equality in action: proving the monoid laws for

endofunctions and proving the monad laws for reader monads. These two examples are very much

higher order; both are well known and practically important among typed functional programmers.

In both case studies, we use classy induction (§4.2) to make our proofs generic over the types

returned by the higher-order functions in play (i.e., Style 2 from §5.1).

6.1 Monoid Laws for Endofunctions
Endofunctions form a law-abiding monoid. A function f is an endofunction when its domain and

codomain types are the same, i.e., f : τ → τ for some τ . A monoid is an algebraic structure

comprising an identity element (mempty) and an associative operation (mappend). For the monoid of

endofunctions, mempty is the identity function and mappend is function composition.

mempty :: Endo a

mempty a = a

mappend :: Endo a → Endo a → Endo a

mappend f g a = f (g a) -- a/k/a (<>)

To be a monoid, mempty must really be an identity with respect to mappend (mLeftIdentity and

mRightIdentity) and mappend must really be associative (mAssociativity).

{-@ mLeftIdentity :: _ => x:Endo a → PEq (Endo a) {mappend mempty x} {x} @-}

{-@ mRightIdentity :: _ => x:Endo a → PEq (Endo a) {x} {mappend x mempty} @-}

{-@ mAssociativity :: _ => x:(Endo a) → y:(Endo a) → z:(Endo a) →

PEq (Endo a) {mappend (mappend x y) z} {mappend x (mappend y z)} @-}

We elide the Reflexivity and Transitivity constraints required by the proofs as _.

Proving the monoid laws for endofunctions demands funext. For example, consider the proof

that mempty is a left identity for mappend , i.e., mappend mempty x == x. To prove this equation

between functions, we can’t use Haskell’s Eq or SMT equality. With funext, each proof reduces to

three parts: XEq to take an input of type a; refl on the left-hand side of the equation, to generate

an equality proof; and (=~=) to give unfolding hints to the SMT solver.

mLeftIdentity x = XEq (mappend mempty x) x $ \a →

refl (mappend mempty x a) ? (mappend mempty x a =~= mempty (x a) =~= x a *** QED)

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Niki Vazou and Michael Greenberg

mRightIdentity x = XEq x (mappend x mempty) $ \a →

refl (x a) ? (x a =~= x (mempty a) =~= mappend x mempty a *** QED)

mAssociativity x y z =

XEq (mappend (mappend x y) z) (mappend x (mappend y z)) $ \a →

refl (mappend (mappend x y) z a) ?

(mappend (mappend x y) z a =~= (mappend x y) (z a)

=~= x (y (z a)) =~= x (mappend y z a)

=~= mappend x (mappend y z) a *** QED)

The (=~=) operator allows for equational style proofs. It is defined as _ =~= y = y, unrefined.

Liquid Haskell’s refinement reflection [Vazou et al. 2018b] unfolds the function definition each time

a function is called. For example, in the mLeftIdentity proof, the term mappend mempty x a =~=

mempty (x a) =~= x a unfolds the definitions of mappend and mempty for the given arguments,

which is enough for the SMT solver. The postfix just *** QED casts the proof into a Haskell unit.

The Liquid Haskell standard library gives (=~=) a refined type:

{-@ (===) :: Eq a => x:a → y:{a | y == x} → {v:a | v == x && v == y} @-}

Refining === checks the intermediate equational steps using SMT equality. In our higher order

setting, we cannot use SMT equality on functions, so we use the unrefined =~= in our proofs. We

lose the intermediate checks, but the unfolding is sound at all types. Liquid Haskell still conflates

(==) and (=); in the future, we will further disentangle assumptions about equality (§4.4).

The Reflexivity constraints on the theorems make our proofs general in the underlying type a:

endofunctions on the type a form a monoid whether a admits SMT equality or if it’s a complex

higher-order type (whose ultimate result admits equality). Haskell’s typeclass resolution ensures

that an appropriate refl method will be constructed whatever type a happens to be.

6.2 Monad Laws for Reader Monads
A reader is a function with a fixed domain r, i.e., the partially applied type Reader r (Figure 10,

top left). Readers form a monad and their composition is a useful way of defining and composing

functions that take some fixed information, like command-line arguments or configuration files.

Our propositional equality can prove the monad laws for readers.

The monad instance for the reader type is defined using function composition (Figure 10, top).

We also define Kleisli composition of monads as a convenience for specifying the monad. We prove

that readers are in fact monads, i.e., their operations satisfy the monad laws (Figure 10, bottom).

Along the way, we also prove that they satisfy the functor and applicative laws in supplementary

material [2020]. The reader monad laws are expressed as refinement type specifications using PEq.

We prove the left and right identities following the pattern of §6.1, i.e., XEq, followed by reflexivity

with (=~=) for function unfolding (Figure 10, middle). We use transitivity to conduct the more

complicated proof of associativity (Figure 10, bottom).

Proof by Associativity and Error Locality. As noted earlier, the use of (=~=) in proofs by reflex-

ivity is not checking intermediate equational steps. So, the proof either succeeds or fails without

explanation. To address this problem, during proof construction, we employed transitivity. For

instance, in the monadAssociativity proof, our goal is to construct the proof PEq _ {el} {er}. To

do so, we pick an intermediate term em; we might attempt an equivalence proof as follows:

trans el em er

(refl el) -- proof that el = em; local error here: needs trans

(trans em emr er -- proof that em = er

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Functional Extensionality for Refinement Types 23

Monad Instance for Readers

type Reader r a = r → a

kleisli :: (a → Reader r b)

→ (b → Reader r c)

→ a → Reader r c

kleisli f g x = bind (f x) g

pure :: a → Reader r a

pure a _r = a

bind :: Reader r a → (a → Reader r b)

→ Reader r b

bind fra farb = \r → farb (fra r) r

Reader Monad Laws

{-@ monadLeftIdentity :: Reflexivity b => a:a → f:(a → Reader r b)

→ PEq (Reader r b) {bind (pure a) f} {f a} @-}

{-@ monadRightIdentity :: Reflexivity a => m:(Reader r a)

→ PEq (Reader r a) {bind m pure} {m} @-}

{-@ monadAssociativity :: (Reflexivity c, Transitivity c) =>

m:(Reader r a) → f:(a → Reader r b) → g:(b → Reader r c) →

PEq (Reader r c) {bind (bind m f) g} {bind m (kleisli f g)} @-}

Identity Proofs By Reflexivity

monadLeftIdentity a f =

XEq (bind (pure a) f) (f a) $ \r →

refl (bind (pure a) f r) ?

(bind (pure a) f r =~= f (pure a r) r

=~= f a r *** QED)

monadRightIdentity m =

XEq (bind m pure) m $ \r →

refl (bind m pure r) ?

(bind m pure r =~= pure (m r) r

=~= m r *** QED)

Associativity Proof By Transitivity and Reflexivity

monadAssociativity m f g = XEq (bind (bind m f) g) (bind m (kleisli f g)) $ \r →

let { el = bind (bind m f) g r ; eml = g (bind m f r) r

; em = (bind (f (m r)) g) r ; emr = kleisli f g (m r) r

; er = bind m (kleisli f g) r }

in trans el em er (trans el eml em (refl el) (refl eml))

(trans em emr er (refl em) (refl emr))

Fig. 10. Case study: Reader Monad Proofs.

(refl em) {- proof that em = emr -} (refl emr) {- proof that emr = er -})

The refl el proof will produce a type error; replacing that proof with an appropriate trans

completes the monadAssociativity proof (Figure 10, bottom). Such an approach to writing proofs

in this style works well: start with refl and where the SMT solver can’t figure things out, a local

refinement type error tells you to expand with trans (or look for a counterexample).

Our reader proofs use the Reflexivity and Transitivity typeclasses to ensure that readers are

monads whatever the return type amay be (with the type of ‘read’ values fixed to r). Having generic

monad laws is critical: readers are typically used to compose functions that take configuration

information, but such functions usually have other arguments, too! For example, an interpreter

might run readFile >>= parse >>= eval, where readFile :: Config → String and parse

:: String → Config → Expr and eval :: Expr → Config → Value . With our generic proof

of associativity, we can rewrite the above to readFile >>= (kleisli parse eval) even though

parse and eval are higher-order terms without Eq instances. Doing so could, in theory, trigger

inlining/fusion rules that would combine the parser and the interpreter.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Niki Vazou and Michael Greenberg

7 RELATEDWORK
Functional Extensionality and Subtyping with an SMT Solver. F

∗
also uses a type-indexed funext

axiom after having run into similar unsoundness issues [FStarLang 2018]. Their extensionality

axiom makes a more roundabout connection with SMT: they state the function equality using

==, which is a ‘squashed’ (i.e., proof irrelevant) form of equals , a propositional Leibniz equality.

They take it as an assumption that this Leibniz equality coincides with SMT equality, much like

Liquid Haskell’s assumption that (==) and (=) align. Liquid Haskell can’t directly accommodate

the F
∗
approach, since there are no dependent, inductive type definitions nor a dedicated notion of

proposition. GADTs offer a limited form of dependency without the full power of F
∗
’s inductive

definitions. Our PEq GADT approximates F
∗
’s approach, but makes different compromises.

Dafny’s SMT encoding axiomatizes extensionality for datatypes, but not for functions [Leino

2012]. Function equality is utterable but neither provable nor disprovable, due to their SMT encoding

and how their solver (Z3) treats functions.

Ou et al. [2004] introduce selfification, which assigns singleton types using equality. Selfified

types have the form self({x :b | eb }, e) = {x :b | eb ∧ x = e}. Our T-Self rule applies selfified types

to arbitrary expressions of base type and our assigned types for constants (TyCons(c)) are in selfified
form. SAGE assigns selfified types to all variables, implying equality on functions [Knowles et al.

2006]. Dminor avoids function equality by not having first-class functions [Bierman et al. 2012].

Extensionality in Dependent Type Theories. Functional extensionality (funext) has a rich history

of study. Martin-Löf type theory comes in a decidable, intensional flavor (ITT) [Martin-Löf 1975] as

well as an undecidable, extensional one (ETT) [Martin-Löf 1984]. NuPRL implements ETT [Constable

et al. 1986], while Coq implements ITT [2020]. Agda’s use of axiom K makes it an ETT [Norell

2008]. Extensionality axioms are independent of the rules of ITT; it is not uncommon to axiomatize

extensionality. Not every model of type theory is consistent with funext, though: von Glehn’s

polynomial model refutes extensionality [2014, Proposition 4.11]. Pfenning [2001] extends LF’s β-
equality [Harper et al. 1993] to combine intensional and extensional flavors of type theory in a single,

modal framework. Hofmann [1996] shows that ETT is a conservative extension of ITT with funext
and UIP; introducing these non-computational axioms breaks canonicity. Observational type theory

(OTT) generalizes ITT and ETT, retaining canonicity and a computational interpretation [Altenkirch

and McBride 2006].

Dependent type theories often care about equalities between equalities, with axioms like UIP (all

identity proofs are the same), K (all identity proofs are refl), and univalence (identity proofs are

isomorphisms, and so not the same). Our system has no way to prove equalities between equalities,

though adding UIP would be easy. Since our propositional equality isn’t exactly Leibniz equality,

axiom K would be harder to encode but could use Theorem 3.4’s proof of reflexivity as a source for

canonical reflexivity proofs. F
∗
’s squashed Leibniz equality is proof-irrelevant and there is at most

one equality proof between any given pair of terms.

Zombie [Sjöberg and Weirich 2015] presents a dependently-typed programming language that

uses an adaptation of a congruence closure algorithm to automatically reason about equality. Zombie

does not use automatic β-reduction, thereby avoiding divergence during type conversion and type

checking. Zombie can do some reasoning about equalities on functions (reflexivity; substitutivity

inside of lambdas) but cannot show equalities based on bound variables, e.g., they cannot prove

that λx . x = λx . x + 0. Zombie is careful to omit a λ-congruence rule, which could be used to prove

funext, “which is not compatible with [their] ‘very heterogeneous’ treatment of equality” [Ibid.,

§9]. We also omit such a rule, but we have funext. Unlike many other dependent type theories, we

don’t use type conversion per se: our definition/judgmental (in)equality is subtyping.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Functional Extensionality for Refinement Types 25

The Lean theorem prover’s quotient-based reasoning can prove funext [de Moura et al. 2015].

They do not, however, have a completely computational account.

We suspect that recent ideas around equality from cubical type theory offer alternatives to our

propositional equality [Sterling et al. 2019]. Such approaches may play better with F
∗
’s approach

using dependent, inductive types than the ‘flatter’ approach we used for Liquid Haskell. In general,

univalent systems like cubical type theory get functional extensionality ‘for free’—that is, for the

price of the univalence axiom or of cubical foundations.

Classy Induction: Inductive Proofs Using Typeclasses. We proved inside Liquid Haskell that our

equivalence relation is reflexive, symmetric, and transitive (§4.2). Our proofs are by ‘classy induction’,

using typeclasses to do induction on type structure: we treat types with an Eq instance as base

cases, while we use funext in the inductive cases (function types). Classy induction uses ad-hoc

polymorphism and general instances to generate proofs that ‘cover’ all types. Ad-hoc polymorphism

has always allowed for programming over type structure (e.g., the Arbitrary and CoArbitrary

classes in QuickCheck [Claessen and Hughes 2000] cover most types); we only call it ‘classy

induction’ when building up proofs.

We did not invent classy induction—it is a folklore technique that we have identified and named.

We have seen five independent uses of “classy induction”. First, Guillemette and Monnier [2008]

speculate that they could eliminate runtime overhead by proving “lemmas over type families”. It

is not clear whether these lemmas would take the form of induction over types or not. Second,

Weirich [2017] constructed the well formedness constraint for occurence maps by induction on

lists at the type level. Third, Boulier et al. [2017] define a family of syntactic type theory models for

the calculus of constructions with universes (CCω). They define a notion of ad-hoc polymorphism

that allows for type quoting and definitions by induction-recursion on their theory’s (predicative)

types. They do not show any examples of its use, but it could be used to generate proofs by classy

induction. Fourth, Dagand et al. [2018] use classy induction to generate instances of higher-order

Galois connections in their framework for interactive proof. Fifth, and finally, Tabareau et al. [2019]

use classy induction to define their univalent parametericity relation for type universes and for

each type constructor in Coq. These last two uses of classy induction may require the programmer

to ‘complete the induction’: while built-in and common types have library instances, a user of the

library would need to supply instances for their custom types.

Any typeclass system that accommodates ad-hoc polymorphism and a notion of proof can

accommodate classy induction. Sozeau [2008] generates proofs of nonzeroness using something

akin to classy induction, though it goes by induction on the operations used to build up arithmetic

expressions in the (dependent!) host language (§6.3.2); he calls this the ‘programmation logique’

aspect of typeclasses. Instance resolution is characterized as proof search over lemmas (§7.1.3).

Sozeau and Oury [2008] introduce typeclasses to Coq; their system can do induction by typeclasses,

but they do not demonstrate the idea in the paper. Earlier work on typeclasses focused on over-

loading [Nipkow and Prehofer 1993; Nipkow and Snelting 1991; Wadler and Blott 1989], with no

notion of classy induction even when proofs are possible [Wenzel 1997].

8 CONCLUSION
Refinement type checking uses powerful SMT solvers to support automated and assisted reasoning

about programs. Functional programs make frequent use of higher-order functions and higher-order

representations with data. Our type-indexed propositional equality lets us avoid unsoundness in

the naïve framing of funext; we reason about function equality in both our formal model and its

implementation in Liquid Haskell. Several examples and two case studies demonstrate the range

and power of our work.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Niki Vazou and Michael Greenberg

Connecting type systems with SMT brings great benefits but requires a careful encoding of your

program into the logic of the SMT solver. Reconciling host-language equality with SMT equality is a

particular challenge. Our propositional equality is a first step towards disentangling host-language

computational equality, decidable SMT equality, and the propositional equality used in refinements.

ACKNOWLEDGMENTS
We thank Conal Elliott for his help in exposing the inadequacy of the naïve function extensionality

encoding. Stephanie Weirich, Éric Tanter, and Nicolas Tabareau offered valuable insights into the

folklore of classy induction.

REFERENCES
Thorsten Altenkirch and Conor McBride. 2006. Towards observational type theory. Unpublished manuscript.

Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, Cesare Tinelli, and Clark Barrett. 2019. Extending SMT Solvers to

Higher-Order Logic. In Automated Deduction – CADE 27, Pascal Fontaine (Ed.). Springer International Publishing, Cham,

35–54.

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard: Version 2.0. Technical Report. Department of

Computer Science, The University of Iowa. Available at www.SMT-LIB.org.
Gilles Barthe, Marco Gaboardi, Emilio JesÃžs Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-

Order Approximate Relational Refinement Types for Mechanism Design and Differential Privacy. Proceedings of

the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL âĂŹ15 (2015).

https://doi.org/10.1145/2676726.2677000

Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David E. Langworthy. 2012. Semantic subtyping with an SMT

solver. J. Funct. Program. 22, 1 (2012), 31–105. https://doi.org/10.1017/S0956796812000032

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In Certified

Programs and Proofs (CPP 2017). Paris, France, 182 – 194. https://doi.org/10.1145/3018610.3018620

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP âĂŹ00). Association for

Computing Machinery, New York, NY, USA, 268âĂŞ279. https://doi.org/10.1145/351240.351266

Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, Todd B.

Knoblock, N. P. Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. 1986. Implementing mathematics with

the Nuprl proof development system. Prentice Hall. http://dl.acm.org/citation.cfm?id=10510

Robert L Constable and Scott Fraser Smith. 1987. Partial objects in constructive type theory. Technical Report. Cornell

University.

Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2018. Foundations of dependent interoperability. J. Funct.

Program. 28 (2018), e9. https://doi.org/10.1017/S0956796818000011

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean

Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on Automated

Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science), Amy P. Felty and Aart

Middeldorp (Eds.), Vol. 9195. Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Github FStarLang. 2018. Functional Equality Discussions in F*. https://github.com/FStarLang/FStar/blob/

cba5383bd0e84140a00422875de21a8a77bae116/ulib/FStar.FunctionalExtensionality.fsti#L133-L134 and https://github.com/

FStarLang/FStar/issues/1542 and https://github.com/FStarLang/FStar/wiki/SMT-Equality-and-Extensionality-in-F%2A.

Louis-Julien Guillemette and Stefan Monnier. 2008. A Type-Preserving Compiler in Haskell. In Proceedings of the 13th ACM

SIGPLAN International Conference on Functional Programming (ICFP âĂŹ08). Association for Computing Machinery, New

York, NY, USA, 75âĂŞ86. https://doi.org/10.1145/1411204.1411218

Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A Framework for Defining Logics. J. ACM 40, 1 (Jan. 1993),

143âĂŞ184. https://doi.org/10.1145/138027.138060

Martin Hofmann. 1996. Conservativity of equality reflection over intensional type theory. In Types for Proofs and Programs,

Stefano Berardi and Mario Coppo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 153–164.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid Type Checking. ACM Trans. Program. Lang. Syst. 32, 2, Article Article

6 (Feb. 2010), 34 pages. https://doi.org/10.1145/1667048.1667051

Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N. Freund, and Cormac Flanagan. 2006. Sage: Hybrid checking for

flexible specifications. In Scheme and Functional Programming Workshop.

K. Rustan M. Leino. 2012. Developing verified programs with Dafny. In Proceedings of the 2012 ACM Conference on High

Integrity Language Technology, HILT ’12, December 2-6, 2012, Boston, Massachusetts, USA, Ben Brosgol, Jeff Boleng, and

https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1017/S0956796812000032
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/351240.351266
http://dl.acm.org/citation.cfm?id=10510
https://doi.org/10.1017/S0956796818000011
https://doi.org/10.1007/978-3-319-21401-6_26
https://github.com/FStarLang/FStar/blob/cba5383bd0e84140a00422875de21a8a77bae116/ulib/FStar.FunctionalExtensionality.fsti#L133-L134
https://github.com/FStarLang/FStar/blob/cba5383bd0e84140a00422875de21a8a77bae116/ulib/FStar.FunctionalExtensionality.fsti#L133-L134
https://github.com/FStarLang/FStar/issues/1542
https://github.com/FStarLang/FStar/issues/1542
https://github.com/FStarLang/FStar/wiki/SMT-Equality-and-Extensionality-in-F%2A
https://doi.org/10.1145/1411204.1411218
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/1667048.1667051

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Functional Extensionality for Refinement Types 27

S. Tucker Taft (Eds.). ACM, 9–10. https://doi.org/10.1145/2402676.2402682

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H.E. Rose and J.C.

Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73 – 118. https://doi.org/10.

1016/S0049-237X(08)71945-1

Per Martin-Löf. 1984. Intuitionistic Type Theory. Bibliopolis. https://books.google.com/books?id=_D0ZAQAAIAAJ As

recorded by Giovanni Sambin.

Tobias Nipkow and Christian Prehofer. 1993. Type Checking Type Classes. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL âĂŹ93). Association for Computing Machinery, New York,

NY, USA, 409âĂŞ418. https://doi.org/10.1145/158511.158698

Tobias Nipkow and Gregor Snelting. 1991. Type Classes and Overloading Resolution via Order-Sorted Unification. In

Proceedings of the 5th ACM Conference on Functional Programming Languages and Computer Architecture. Springer-Verlag,

Berlin, Heidelberg, 1âĂŞ14.

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Proceedings of the 6th International Conference on Advanced

Functional Programming (AFPâĂŹ08). Springer-Verlag, Berlin, Heidelberg, 230âĂŞ266.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. 2004. Dynamic Typing with Dependent Types. In Exploring

New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress, TC1 3rd International Conference on Theoretical

Computer Science (TCS2004), 22-27 August 2004, Toulouse, France (IFIP), Jean-Jacques Lévy, Ernst W. Mayr, and John C.

Mitchell (Eds.), Vol. 155. Kluwer/Springer, 437–450. https://doi.org/10.1007/1-4020-8141-3_34

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing by the rules: rewriting as a practical optimisation

technique in GHC. In 2001 Haskell Workshop (2001 haskell workshop ed.). ACM SIGPLAN. https://www.microsoft.com/en-

us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/

F. Pfenning. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Proceedings 16th Annual

IEEE Symposium on Logic in Computer Science. 221–230.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA, 159–169.

https://doi.org/10.1145/1375581.1375602

John Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes for specifications: Predicate subtyping in PVS. IEEE

Transactions on Software Engineering 24, 9 (1998), 709–720.

Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. 2017. Polymorphic Manifest Contracts, Revised and Resolved.

ACM Trans. Program. Lang. Syst. 39, 1, Article 3 (Feb. 2017), 36 pages. https://doi.org/10.1145/2994594

Vilhelm Sjöberg and Stephanie Weirich. 2015. Programming up to Congruence. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL âĂŹ15). Association for Computing

Machinery, New York, NY, USA, 369âĂŞ382. https://doi.org/10.1145/2676726.2676974

Matthieu Sozeau. 2008. Un environnement pour la programmation avec types dépendants. Ph.D. Dissertation. Université Paris

11, Orsay, France.

Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In Theorem Proving in Higher Order Logics, Otmane Ait

Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–293.

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. 2019. Cubical Syntax for Reflection-Free Extensional Equality. CoRR

abs/1904.08562 (2019). arXiv:1904.08562 http://arxiv.org/abs/1904.08562

supplementary material. 2020. Supplementary Material for Functional Extensionality for Refinement Types.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.

2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2019. The Marriage of Univalence and Parametricity. arXiv e-prints,

Article arXiv:1909.05027 (Sept. 2019), arXiv:1909.05027 pages. arXiv:cs.PL/1909.05027

Masako Takahashi. 1989. Parallel Reductions in lambda-Calculus. J. Symb. Comput. 7, 2 (1989), 113–123. https://doi.org/10.

1016/S0747-7171(89)80045-8

The Coq Development Team. 2020. The Coq Proof Assistant, version 8.11.0. https://doi.org/10.5281/zenodo.3744225

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and GrahamHutton. 2018a. Theorem Proving for All: Equational

Reasoning in Liquid Haskell (Functional Pearl). In Proceedings of the 11th ACM SIGPLAN International Symposium on

Haskell (Haskell 2018). ACM, New York, NY, USA, 132–144. https://doi.org/10.1145/3242744.3242756

Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Languages and Systems,

Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 209–228.

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.

2018b. Refinement reflection: complete verification with SMT. PACMPL 2, POPL (2018), 53:1–53:31. https://doi.org/10.

1145/3158141

https://doi.org/10.1145/2402676.2402682
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://books.google.com/books?id=_D0ZAQAAIAAJ
https://doi.org/10.1145/158511.158698
https://doi.org/10.1007/1-4020-8141-3_34
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2994594
https://doi.org/10.1145/2676726.2676974
http://arxiv.org/abs/1904.08562
http://arxiv.org/abs/1904.08562
https://www.fstar-lang.org/papers/mumon/
http://arxiv.org/abs/cs.PL/1909.05027
https://doi.org/10.1016/S0747-7171(89)80045-8
https://doi.org/10.1016/S0747-7171(89)80045-8
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3158141

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Niki Vazou and Michael Greenberg

Tamara von Glehn. 2014. Polynomials and Models of Type Theory. Ph.D. Dissertation. Magdalene College, University of

Cambridge.

P. Wadler and S. Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL âĂŹ89). Association for Computing Machinery, New

York, NY, USA, 60âĂŞ76. https://doi.org/10.1145/75277.75283

Stephanie Weirich. 2017. The Influence of Dependent Types (Keynote). In Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages (POPL 2017). Association for Computing Machinery, New York, NY, USA, 1.

https://doi.org/10.1145/3009837.3009923

Markus Wenzel. 1997. Type classes and overloading in higher-order logic. In Theorem Proving in Higher Order Logics, Elsa L.

Gunter and Amy Felty (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 307–322.

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation

115 (1994), 38–94. Issue 1.

Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In Proceedings of the

ACM SIGPLAN 1998 conference on Programming language design and implementation. 249–257.

Jakub Zalewski, James McKinna, J. Garrett Morris, and Philip Wadler. 2020. Blame tracking at higher fidelity. In Workshop

on Gradual Typing (WGT).

https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/3009837.3009923

1
3
7
3

1
3
7
4

1
3
7
5

1
3
7
6

1
3
7
7

1
3
7
8

1
3
7
9

1
3
8
0

1
3
8
1

1
3
8
2

1
3
8
3

1
3
8
4

1
3
8
5

1
3
8
6

1
3
8
7

1
3
8
8

1
3
8
9

1
3
9
0

1
3
9
1

1
3
9
2

1
3
9
3

1
3
9
4

1
3
9
5

1
3
9
6

1
3
9
7

1
3
9
8

1
3
9
9

1
4
0
0

1
4
0
1

1
4
0
2

1
4
0
3

1
4
0
4

1
4
0
5

1
4
0
6

FunctionalExtensionality
for

R
efinem

ent
Types

29

A COMPLETE TYPE CHECKING OF EXTENSIONALITY EXAMPLE

Γ(funext) = ∀a b .Eq b ⇒ f : (a → b) → д : (a → b) → (x : a → { f x == д x}) → { f ⋍ д}

Γ ⊢ funext :: ∀a b .Eq b ⇒ f : (a → b) → д : (a → b) → (x : a → { f x == д x}) → { f ⋍ д}

Γ ⊢ funext @{v : α | κα } :: ∀b .Eq b ⇒ f : ({v : α | κα } → b) → д : ({v : α | κα } → b) → (x : {v : α | κα } → { f x == д x}) → { f ⋍ д}

Γ ⊢ funext @{v : α | κα } @{v : β | κβ } :: Eq {v : β | κβ } ⇒ f : ({v : α | κα } → {v : β | κβ }) → д : ({v : α | κα } → {v : β | κβ }) → (x : {v : α | κα } → { f x == д x}) → { f ⋍ д}
Γ(d) = Eq α

Γ ⊢ d :: Eq α Γ ⊢ Eq α ⪯ Eq {v : β | κβ }
Sub-D

Γ ⊢ funext @{v : α | κα } @{v : β | κβ } d :: f : ({v : α | κα } → {v : β | κβ }) → д : ({v : α | κα } → {v : β | κβ }) → (x : {v : α | κα } → { f x == д x}) → { f ⋍ д}
Γ(h) = x : {v : α | dh} → {v : β | rh}

Γ ⊢ h :: x : {v : α | dh} → {v : β | rh}

. . .

Γ ⊢ x : {v : α | dh} → {v : β | rh} ⪯ {v : α | κα } → {v : β | κβ }
Sub-H

Γ ⊢ funext @{v : α | κα } @{v : β | κβ } d h :: д : ({v : α | κα } → {v : β | κβ }) → (x : {v : α | κα } → {h x == д x}) → {h ⋍ д}
Γ(k) = x : {v : α | dk} → {v : β | rk}

Γ ⊢ k :: x : {v : α | dk} → {v : β | rk}

. . .

Γ ⊢ x : {v : α | dk} → {v : β | rk} ⪯ {v : α | κα } → {v : β | κβ }
Sub-K

Γ ⊢ funext @{v : α | κα } @{v : β | κβ } d h k :: (x : {v : α | κα } → {h x == k x}) → {h ⋍ k}
Γ(lemma) = x : α → {p}

Γ ⊢ lemma :: x : α → {p}

. . .

Γ ⊢ x : α → {p} ⪯ x : {v : α | κα } → {h x == k x}
Sub-L

Γ ⊢ funext @{v : α | κα } @{v : β | κβ } d h k lemma :: {h ⋍ k}

κα ⇒ dh

Γ ⊢ {v : α | κα } ⪯ {v : α | dh}

κα ⇒ rh ⇒ κβ

Γ,x : {v : α | κα } ⊢ {v : β | rh} ⪯ {v : β | κβ }

Γ ⊢ x : {v : α | dh} → {v : β | rh} ⪯ {v : α | κα } → {v : β | κβ }
Sub-H

κα ⇒ dk

Γ ⊢ {v : α | κα } ⪯ {v : α | dk}

κα ⇒ rk ⇒ κβ

Γ,x : {v : α | κα } ⊢ {v : β | rk} ⪯ {v : β | κβ }

Γ ⊢ x : {v : α | dk} → {v : β | rk} ⪯ {v : α | κα } → {v : β | κβ }
Sub-K

κα ⇒ true

Γ ⊢ {v : α | κα } ⪯ α

κα ⇒ p ⇒ h x == k x

Γ,x : {v : α | κα } ⊢ {p} ⪯ {h x == k x}

Γ ⊢ x : α → {p} ⪯ x : {v : α | κα } → {h x == k x}
Sub-L

Fig. 11. Complete type checking of naïve extensionality in theoremEq.

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

30 Niki Vazou and Michael Greenberg

Expressions e ::= as in λRE

Types t ::= Bool | () | PBEqtee | t → t

Typing Environment G ::= ∅ | G,x : t

Basic Type checking G ⊢B e :: t

G ⊢B c :: ⌊TyCons(c)⌋
BT-Con

x : t ∈ G

G ⊢B x :: t
BT-Var

G ⊢B e :: tx → t G ⊢B ex :: tx

G ⊢B e ex :: t
BT-App

G,x : ⌊τx ⌋ ⊢B e :: t

G ⊢B λx :τx . e :: ⌊τx ⌋ → t
BT-Lam

G ⊢B e :: ()
G ⊢B e1 ::b G ⊢B e2 ::b

G ⊢B bEqb e1 e2 e :: PBEqbe1e2

BT-Eq-Base

G ⊢B e :: ()
G ⊢B e1 :: ⌊τx → τ ⌋ G ⊢B e2 :: ⌊τx → τ ⌋

G ⊢B xEqx :τx→τ e1 e2 e :: PBEq ⌊τx→τ ⌋e1e2

BT-Eq-Fun

Fig. 12. Syntax and Typing of λE .

B PROOFS AND DEFINITIONS FOR METATHEORY
In this section we provide proofs and definitions ommitted from §3.

B.1 Base Type Checking
For completeness, we defined λE , the unrefined version of λRE , that ignores the refinements on

basic types and the expression indexes from the typed equality.

The function ⌊·⌋ is defined to turn λRE types to their unrefined counterparts.

⌊Bool⌋ � Bool
⌊()⌋ � ()

⌊PEqτ {e1} {e2}⌋ � PBEq ⌊τ ⌋

⌊{v :b | r }⌋ � b
⌊x :τx → τ ⌋ � ⌊τx ⌋ → ⌊τ ⌋

Figure 12 defines the syntax and typing of λE that we use to define type denotations of λRE .

B.2 Constant Property
Theorem B.1. For the constants c = true, false, unit, and ==b , constants are sound, i.e., c ∈

[| TyCons(c) |].

Proof. Below are the proofs for each of the four constants.

• e ≡ true and e ∈ [| {x :Bool | x ==Bool true} |]. We need to prove the below three require-

ments of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because true is a value, thus v = true;
– ⊢B e :: Bool, which holds by the typing rule BT-Con; and

– (x ==Bool true)[e/x] ↪→
∗ true, which holds because

(x ==Bool true)[e/x] = true ==Bool true
↪→ (==(true,Bool)) true
↪→ true = true
= true

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

Functional Extensionality for Refinement Types 31

• e ≡ false and e ∈ [| {x :Bool | x ==Bool false} |]. We need to prove the below three require-

ments of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because false is a value, thus v = false;
– ⊢B e :: Bool, which holds by the typing rule BT-Con; and

– (x ==Bool false)[e/x] ↪→
∗ true, which holds because

(x ==Bool false)[e/x] = false ==Bool false
↪→ (==(false,Bool)) false
↪→ false = false
= true

• e ≡ unit and e ∈
[
| {x :() | x ==() unit} |

]
. We need to prove the below three requirements

of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because unit is a value, thus v = unit;
– ⊢B e :: (), which holds by the typing rule BT-Con; and

– (x ==() unit)[e/x] ↪→
∗ true, which holds because

(x ==() unit)[e/x] = unit ==() unit
↪→ (==(unit,())) unit
↪→ unit = unit
= true

• ==b∈ [|x :b → y:b → {z:Bool | z ==Bool (x ==b y)} |]. By the definition of interpretation

of function types, we fix ex , ey ∈ [|b |] and we need to prove that e ≡ ex ==b ey ∈[
| ({z:Bool | z ==Bool (x ==b y)})[ex/x][ey/y] |

]
. We prove the below three requirements of

membership in the interpretation of basic types:

– e ↪→∗ v , which holds because

e = ex ==b ey
↪→∗ vx ==b ey because ex ∈ [|b |]
↪→∗ vx ==b vy because ey ∈ [|b |]
↪→ (==(vx ,b)) vy
↪→ vx = vy
= v with v = true or v = false

– ⊢B e :: Bool, which holds by the typing rule BT-Con and because ex , ey ∈ [|b |] thus ⊢B ex ::b
and ⊢B ey ::b; and

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

32 Niki Vazou and Michael Greenberg

– (z ==Bool (x ==b y))[e/z][ex/x][ey/y] ↪→
∗ true. Since ex , ey ∈ [|b |] both expressions

evaluate to values, say ex ↪→
∗ vx and ey ↪→

∗ vy which holds because

(z ==Bool (x ==b y))[e/z][ex/x][ey/y] = e ==Bool (ex ==b ey)
= (ex ==b ey) ==Bool (ex ==b ey)
↪→∗ (vx ==b ey) ==Bool (ex ==b ey) since ex ↪→

∗ vx
↪→∗ (vx ==b vy) ==Bool (ex ==b ey) since ey ↪→

∗ vy
↪→ ((==(vx ,b)) vy) ==Bool (ex ==b ey)
↪→ (vx = vy) ==Bool (ex ==b ey)
↪→∗ (vx = vy) ==Bool (vx ==b ey) since ex ↪→

∗ vx
↪→∗ (vx = vy) ==Bool (vx ==b vy) since ey ↪→

∗ vy
↪→ (vx = vy) ==Bool ((==(vx ,b)) vy)
↪→ (vx = vy) ==Bool (vx = vy)
↪→ (vx = vy) ==Bool (vx = vy)
↪→ ((==((vx=vy),Bool)) (vx = vy)
↪→ (vx = vy) = (vx = vy)
= true

□

B.3 Type Soundness
Theorem B.2 (Semantic soundness). If Γ ⊢ e :: τ then Γ |= e ∈ τ .

Proof. By induction on the typing derivation.

T-Sub By inversion of the rule we have

(1) Γ ⊢ e :: τ ′

(2) Γ ⊢ τ ′ ⪯ τ
By IH on (1) we have

(3) Γ |= e ∈ τ ′

By Theorem B.6 and (2) we have

(4) Γ ⊢ τ ′ ⊆ τ
By (3), (4), and the definition of subsets we directly get Γ |= e ∈ τ .

T-Self Assume Γ ⊢ e :: {z:b | z ==b e}. By inversion we have

(1) Γ ⊢ e :: {z:b | r }
By IH we have

(2) Γ |= e ∈ {z:b | r }
We fix θ ∈ [| Γ |]. By the definition of semantic typing we get

(3) θ · e ∈ [|θ · {z:b | r } |]
By the definition of denotations on basic types we have

(4) θ · e ↪→∗ v
(5) ⊢B θ · e ::b
(6) θ · r [θ · e/z] ↪→∗ true
Since θ contains values, by the definition of ==b we have

(7) θ · e ==b θ · e ↪→∗ true
Thus

(8) θ · (z ==b e)[θ · e/z] ↪→∗ true
By (4), (5), and (8) we have

(9) θ · e ∈ [|θ · {z:b | z ==b e} |]
Thus, Γ |= e ∈ {z:b | z ==b e}.

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

Functional Extensionality for Refinement Types 33

T-Con This case holds exactly because of Property B.1.

T-Var This case holds by the definition of closing substitutions.

T-Lam Assume Γ ⊢ λx :τx . e :: x :τx → τ . By inversion of the rule we have Γ,x : τx ⊢ e :: τ . By IH we

get Γ,x : τx |= e ∈ τ .
We need to show that Γ |= λx :τx . e ∈ x :τx → τ . Which, for some θ ∈ [| Γ |] is equivalent to
λx :θ · τx . θ · e ∈ [|x :θ · τx → θ · τ |].
We pick a random ex ∈ [|θ · τx |] thus we need to show that θ · e[ex/x] ∈ [|θ · τ [ex/x] |]. By
Lemma B.3, there exists vx so that ex ↪→

∗ vx and vx ∈ [|τx |]. By the inductive hypothesis,

θ · e[vx/x] ∈ [|θ · τ [vx/x] |]. By Lemma B.4, θ · e[ex/x] ∈ [|θ · τ [ex/x] |], which concludes our

proof.

T-App Assume Γ ⊢ e ex :: τ [ex/x]. By inversion we have

(1) Γ ⊢ e :: x :τx → τ
(2) Γ ⊢ ex :: τx
By IH we get

(3) Γ |= e ∈ x :τx → τ
(4) Γ |= ex ∈ τx
We fix θ ∈ [| Γ |]. By the definition of semantic types

(5) θ · e ∈ [|θ · x :τx → τ |]
(6) θ · ex ∈ [|θ · τx |]
By (5), (6), and the definition of semantic typing on functions:

(7) θ · e ex ∈ [|θ · τ [ex/x] |]
Which directly leads to the required Γ |= e ex ∈ τ [ex/x]

T-Eq-Base Assume Γ ⊢ bEqb el er e :: PEqb {el } {er }. By inversion we get:

(1) Γ ⊢ el :: τl
(2) Γ ⊢ er :: τr
(3) Γ ⊢ τl ⪯ {x :b | true}
(4) Γ ⊢ τr ⪯ {x :b | true}
(5) Γ, r : τr , l : τl ⊢ e :: {x :() | l ==b r }
By IH we get

(4) Γ |= el ∈ τl
(5) Γ |= er ∈ τr
(6) Γ, r : τr , l : τl |= e ∈ {x :() | l ==b r }
We fix θ ∈ [| Γ |]. Then (4) and (5) become

(7) θ · el ∈ [|θ · τl |]
(8) θ · er ∈ [|θ · τr |]
(9) Γ |= er ∈ τr
(10) Γ, r : τr , l : τl |= e ∈ {x :() | l ==b r }

Assume

(11) θ · el ↪→
∗ vl

(12) θ · er ↪→
∗ vr

By (7), (8), (11), (12), and Lemma B.3 we get

(13) vl ∈ [|θ · τl |]
(14) vr ∈ [|θ · τr |]

By (10), (11), and (12) we get

(15) vl ==b vr ↪→
∗ true

By (11), (12), (15), ane Lemma B.5 we have

(16) θ · el ==b θ · er ↪→
∗ true

By (1-5) we get:

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

34 Niki Vazou and Michael Greenberg

(17) ⊢B θ · bEqb el er e :: PBEqb
Trivially, with zero evaluation steps we have:

(18) θ · bEqb el er e ↪→
∗ bEqb (θ · el) (θ · el) (θ · e)

By (16), (17), (18) and the definition of semantic types on basic equality types we have

(19) θ · bEqb el er e ∈ [|θ · PEqb {el } {er } |]
Which leads to the required Γ |= bEqb el er e ∈ PEqb {el } {er }.

T-Eq-Fun Assume Γ ⊢ xEqx :τx→τ el er e :: PEqx :τx→τ {el } {er }. By inversion we have

(1) Γ ⊢ el :: τl
(2) Γ ⊢ er :: τr
(3) Γ ⊢ τl ⪯ x :τx → τ
(4) Γ ⊢ τr ⪯ x :τx → τ
(5) Γ, r : τr , l : τl ⊢ e :: (x :τx → PEqτ {l x} {r x})
(6) Γ ⊢ x :τx → τ
By IH and Theorem B.6 we get

(7) Γ |= el ∈ τl
(8) Γ |= er ∈ τr
(9) Γ ⊢ τl ⊆ x :τx → τ
(10) Γ ⊢ τr ⊆ x :τx → τ
(11) Γ, r : τr , l : τl |= e ∈ (x :τx → PEqτ {l x} {r x})

By (1-5) we get

(12) ⊢B θ · xEqx :τx→τ el er e :: PBEq ⌊θ ·(x :τx→τ)⌋
Trivially, by zero evaluation steps, we get

(13) θ · xEqx :τx→τ el er e ↪→
∗ xEqx :θ ·τx→θ ·τ (θ · el) (θ · er) (θ · e)

By (7-10) we get

(14) θ · el ,θ · er ∈ [|θ · x :τx → τ |]
By (7), (8), (11), the definition of semantic types on functions, and Lemmata B.3 and B.4

(similar to the previous case) we have

– ∀ex ∈ [|τx |] .e ex ∈
[
| PEqτ [ex /x] {el ex } {er ex } |

]
By (12), (13), (14), and (15) we get

(19) θ · xEqx :τx→τ el er e ∈
[
|θ · PEqx :τx→τ {el } {er } |

]
Which leads to the required Γ |= xEqx :τx→τ el er e ∈ PEqx :τx→τ {el } {er }.

□

Lemma B.3. If e ∈ [|τ |], then e ↪→∗ v and v ∈ [|τ |].

Proof. By structural induction of the type τ . □

Lemma B.4. If ex ↪→
∗ vx and e[vx/x] ∈ [|τ [vx/x] |], then e[ex/x] ∈ [|τ [ex/x] |].

Proof. We can use parallel reductions (of §C) to prove that if e1 ⇒ e2, then (1) [|τ [e1/x] |] =
[|τ [e2/x] |] and (2) e1 ∈ [|τ |] iff e2 ∈ [|τ |]. The proof directly follows by these two properties. □

Lemma B.5. If ex ↪→
∗ e ′x and e[e ′x/x] ↪→

∗ c , then e[ex/x] ↪→
∗ c .

Proof. As an instance of Corollary C.17. □

We define semantic subtyping as follows: Γ ⊢ τ ⊆ τ ′ iff ∀θ ∈ [| Γ |] . [|θ · τ |] ⊆ [|θ · τ ′ |].

Theorem B.6 (Subtyping semantic soundness). If Γ ⊢ τ ⪯ τ ′ then Γ ⊢ τ ⊆ τ ′.

Proof. By induction on the derivation tree:

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

Functional Extensionality for Refinement Types 35

S-Base Assume Γ ⊢ {x :b | r } ⪯ {x ′
:b | r ′}. By inversion∀θ ∈ [| Γ |] , [|θ · {x :b | r } |] ⊆ [|θ · {x ′

:b | r ′} |],
which exactly leads to the required.

S-Fun Assume Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′. By inversion

(1) Γ ⊢ τ ′x ⪯ τx
(2) Γ,x : τ ′x ⊢ τ ⪯ τ ′

By IH

(3) Γ ⊢ τ ′x ⊆ τx
(4) Γ,x : τ ′x ⊢ τ ⊆ τ ′

We fix θ ∈ Γ. We pick e . We assume e ∈ [|θ · x :τx → τ |] and we will show that e ∈[
|θ · x :τ ′x → τ ′ |

]
. By assumption

(5) ∀ex ∈ [|θ · τx |]. e ex ∈ [|θ · τ [ex/x] |]
We need to show ∀ex ∈

[
|θ · τ ′x |

]
. e ex ∈ [|θ · τ ′[ex/x] |]. We fix ex . By (3), if ex ∈

[
|θ · τ ′x |

]
,

then ex ∈ [|θ · τx |] and (5) applies, so e ex ∈ [|θ · τ [ex/x] |], which by (4) gives e ex ∈

[|θ · τ ′[ex/x] |]. Thus, e ∈
[
|θ · x :τ ′x → τ ′ |

]
. This leads to [|θ · x :τx → τ |] ⊆

[
|θ · x :τ ′x → τ ′ |

]
,

which by definition gives semantic subtyping: Γ ⊢ x :τx → τ ⊆ x :τ ′x → τ ′.
S-Eq Assume Γ ⊢ PEqτi {el } {er } ⪯ PEqτ ′i {el } {er }. We split cases on the structure of τi .

– If τi is a basic type, then τi is trivially refined to true. Thus, τi = τ
′
i = b and for each θ ∈ Γ,

[|θ · PEqτ {el } {er } |] = [|θ · PEqτ ′ {el } {er } |], thus set inclusion reduces to equal sets.

– If τi is a function type, thus Γ ⊢ PEqx :τx→τ {el } {er } ⪯ PEqx :τ ′x→τ ′ {el } {er }
By inversion

(1) Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′

(2) Γ ⊢ x :τ ′x → τ ′ ⪯ x :τx → τ
By inversion on (1) and (2) we get

(3) Γ ⊢ τ ′x ⪯ τx
(4) Γ,x : τ ′x ⊢ τ ⪯ τ ′

(5) Γ,x : τx ⊢ τ ′ ⪯ τ
By IH on (1) and (3) we get

(6) Γ ⊢ x :τx → τ ⊆ x :τ ′x → τ ′

(7) Γ ⊢ τ ′x ⊆ τx
We fix θ ∈ Γ and some e . If e ∈

[
|θ · PEqx :τx→τ {el } {er } |

]
we need to show that e ∈[

|θ · PEqx :τ ′x→τ ′ {el } {er } |
]
. By the assumption we have

(8) ⊢B e :: PBEq ⌊θ ·(x :τx→τ)⌋
(9) e ↪→∗ xEq

_
(θ · el) (θ · er) epf

(10) (θ · el), (θ · er) ∈ [|θ · (x :τx → τ) |]
(11) ∀ex ∈ [|θ · τx |] .epf ex ∈

[
| PEqθ ·(τ [ex /x]) {(θ · el) ex } {(θ · er) ex } |

]
Since (8) only depends on the structure of the type index, we get

(12) ⊢B e :: PBEq ⌊θ ·(x :τ ′x→τ ′)⌋
By (6) and (10) we get

(13) (θ · el), (θ · er) ∈
[
|θ · (x :τ ′x → τ ′) |

]
By (4), (5), LemmaB.7, the rule S-Eq and the IH,we get that

[
| PEqθ ·(τ [ex /x]) {(θ · el) ex } {(θ · er) ex } |

]
⊆[

| PEqθ ·(τ ′[ex /x]) {(θ · el) ex } {(θ · er) ex } |
]
. By which, (11), (7), and reasoning similar to the

S-Fun case, we get

(14) ∀ex ∈
[
|θ · τ ′x |

]
.epf ex ∈

[
| PEqθ ·(τ ′[ex /x]) {(θ · el) ex } {(θ · er) ex } |

]
By (12), (9), (13), and (14) we conclude that e ∈

[
|θ · PEqx :τ ′x→τ ′ {el } {er } |

]
, thus Γ ⊢ PEqx :τx→τ {el } {er } ⊆

PEqx :τ ′x→τ ′ {el } {er }.

□

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

36 Niki Vazou and Michael Greenberg

Lemma B.7 (Strengthening). If Γ1 ⊢ τ1 ⪯ τ2, then:

(1) If Γ1,x : τ2, Γ2 ⊢ e :: τ then Γ1,x : τ1, Γ2 ⊢ e :: τ .
(2) If Γ1,x : τ2, Γ2 ⊢ τ ⪯ τ ′ then Γ1,x : τ1, Γ2 ⊢ τ ⪯ τ ′.
(3) If Γ1,x : τ2, Γ2 ⊢ τ then Γ1,x : τ1, Γ2 ⊢ τ .
(4) If ⊢ Γ1,x : τ2, Γ2 then ⊢ Γ1,x : τ1, Γ2.

Proof. The proofs go by induction. Only the T-Var case is insteresting; we use T-Sub and our

assumption. □

Lemma B.8 (Semantic typing is closed under parallel reduction in expressions). If e1 ⇒∗

e2, then e1 ∈ [|τ |] iff e2 ∈ [|τ |].

Proof. By induction on τ , using parallel reduction as a bisimulation (Lemma C.5 and Corol-

lary C.15). □

Lemma B.9 (Semantic typing is closed under parallel reduction in types). If τ1 ⇒∗ τ2

then [|τ1 |] = [|τ2 |].

Proof. By induction on τ1 (which necessarily has the same shape as τ2). We use parallel reduction

as a bisimulation (Lemma C.5 and Corollary C.15). □

Lemma B.10 (Parallel reducing types are eqal). If Γ ⊢ τ1 and Γ ⊢ τ2 and τ1 ⇒∗ τ2 then

Γ ⊢ τ1 ⪯ τ2 and Γ ⊢ τ1 ⪯ τ2.

Proof. By induction on the parallel reduction sequence; for a single step, by induction on τ1

(which must have the same structure as τ2). We use parallel reduction as a bisimulation (Lemma C.5

and Corollary C.15). □

Lemma B.11 (Regularity). (1) If Γ ⊢ e :: τ then ⊢ Γ and Γ ⊢ τ .
(2) If Γ ⊢ τ then ⊢ Γ.
(3) If Γ ⊢ τ1 ⪯ τ2 then ⊢ Γ and Γ ⊢ τ1 and Γ ⊢ τ2.

Proof. By a big ol’ induction. □

Lemma B.12 (Canonical forms). If Γ ⊢ v :: τ , then:

• If τ = {x :b | e}, then v = c such that TyCons(c) = b and Γ ⊢ TyCons(c) ⪯ {x :b | e}.
• If τ = x :τx → τ ′, then v = T-Lamxτ ′xe such that Γ ⊢ τx ⪯ τ ′x and Γ,x : τ ′x ⊢ e :: τ ′′ such that

τ ′′ ⊢ τ ′ ⪯ .
• If τ = PEqb {el } {er } then v = bEqb el er vp such that Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl
and τr that are refinements of b) and Γ, r : τr , l : τl ⊢ vp :: {x :() | l ==b r }.

• If τ = PEqx :τx→τ ′ {el } {er } then v = xEqx :τ ′x→τ ′′ el er vp such that Γ ⊢ τx ⪯ τ ′x and

Γ,x : τx ⊢ τ ′′ ⪯ τ ′ and Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl and τr that are subtypes of
x :τ ′x → τ ′′) and Γ, r : τr , l : τl ⊢ vp :: x :τ ′x → PEqτ ′′ {el x} {er x}.

B.4 The Binary Logical Relation
Theorem B.13 (EqRT soundness). If Γ ⊢ e :: PEqτ {e1} {e2}, then Γ ⊢ e1 ∼ e2 ::τ .

Proof. By Γ ⊢ e :: PEqτ {e1} {e2} and the Fundamental Property B.22 we have Γ ⊢ e ∼

e :: PEqτ {e1} {e2}. Thus, for a fixed δ ∈ Γ, δ1 · e ∼ δ2 · e :: PEqτ {e1} {e2}; δ . By the definition of the

logical relation for EqRT, we have δ1 · e1 ∼ δ2 · e2 ::τ ; δ . So, Γ ⊢ e1 ∼ e2 ::τ . □

Lemma B.14 (LR respects subtyping). If Γ ⊢ e1 ∼ e2 ::τ and Γ ⊢ τ ⪯ τ ′, then Γ ⊢ e1 ∼ e2 ::τ ′.

Proof. By induction on the derivation of the subtyping tree.

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Functional Extensionality for Refinement Types 37

S-Base By assumption we have

(1) Γ ⊢ e1 ∼ e2 :: {x :b | r }
(2) Γ ⊢ {x :b | r } ⪯ {x ′

:b | r ′}
By inversion on (2) we get

(3) ∀θ ∈ [| Γ |] , [|θ · {x :b | r } |] ⊆ [|θ · {x ′
:b | r ′} |]

We fix δ ∈ Γ. By (1) we get

(4) δ1 · e1 ∼ δ2 · e2 :: {x :b | r }; δ
By the definition of logical relations:

(5) δ1 · e1 ↪→
∗ v1

(6) δ2 · e2 ↪→
∗ v2

(7) v1 ∼ v2 :: {x :b | r }; δ
By (7) and the definition of the logical relation on basic types we have

(8) v1 = v2 = c
(9) ⊢B c ::b
(10) δ1 · r [c/x] ↪→

∗ true
(11) δ2 · r [c/x] ↪→

∗ true
By (3), (10) and (11) become

(12) δ1 · r
′[c/x ′] ↪→∗ true

(13) δ2 · r
′[c/x ′] ↪→∗ true

By (8), (9), (12), and (13) we get

(14) v1 ∼ v2 :: {x ′
:b | r ′}; δ

By (5), (6), and (14) we have

(15) δ1 · e1 ∼ δ2 · e2 :: {x ′
:b | r ′}; δ

Thus, Γ ⊢ e1 ∼ e2 :: {x ′
:b | r ′}.

S-Fun By assumption:

(1) Γ ⊢ e1 ∼ e2 ::x :τx → τ
(2) Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′

By inversion of the rule (2)

(3) Γ ⊢ τ ′x ⪯ τx
(4) Γ,x : τ ′x ⊢ τ ⪯ τ ′

We fix δ ∈ Γ. By (1) and the definition of logical relation

(5) δ1 · e1 ↪→
∗ v1

(6) δ2 · e2 ↪→
∗ v2

(7) v1 ∼ v2 ::x :τx → τ ; δ
We fix v ′

1
and v ′

2
so that

(8) v ′
1
∼ v ′

2
::τ ′x ; δ

By (8) and the definition of logical relations, since the values are idempotent under substitution,

we have

(9) Γ ⊢ v ′
1
∼ v ′

2
::τ ′x

By (9) and inductive hypothesis on (3) we have

(10) Γ ⊢ v ′
1
∼ v ′

2
::τx

By (10), idempotence of values under substitution, and the definition of logical relations, we

have

(11) v ′
1
∼ v ′

2
::τx ; δ

By (7), (11), and the definition of logical relations on function values:

(12) v1 v
′
1
∼ v2 v

′
2

::τ ; δ , (v ′
1
,v ′

2
)/x

By (9), (12), and the definition of logical relations we have

(12) Γ,x : τ ′x ⊢ v1 v
′
1
∼ v2 v

′
2

::τ

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

38 Niki Vazou and Michael Greenberg

By (12) and inductive hypothesis on (4) we have

(13) Γ,x : τ ′x ⊢ v1 v
′
1
∼ v2 v

′
2

::τ ′

By (8), (13), and the definition of logical relations, we have

(14) v1 v
′
1
∼ v2 v

′
2

::τ ′; δ , (v ′
1
,v ′

2
)/x

By (8), (14), and the definition of logical relations, we have

(15) v1 ∼ v2 ::x :τ ′x → τ ′; δ
By (5), (6), and (15), we get

(16) δ1 · e1 ∼ δ2 · e2 ::x :τ ′x → τ ′; δ
So, Γ ⊢ e1 ∼ e2 ::x :τ ′x → τ ′.

S-Eq By hypothesis:

(1) Γ ⊢ e1 ∼ e2 :: PEqτ {el } {er }
(2) Γ ⊢ PEqτ {el } {er } ⪯ PEqτ ′ {el } {er }
We fix δ ∈ Γ. By (1)

(3) δ1 · e1 ∼ δ2 · e2 :: PEqτ {el } {er }; δ
By (3) and the definition of logical relations.

(4) δ1 · e1 ↪→
∗ v1

(5) δ2 · e2 ↪→
∗ v2

(6) v1 ∼ v2 :: PEqτ {el } {er }; δ
By (6) and the definition of logical relations

(7) δ1 · el ∼ δ2 · er ::τ ; δ
By (7) and the definition of logical relations.

(8) Γ ⊢ el ∼ er ::τ
By inversion on (2)

(9) Γ ⊢ τ ⪯ τ ′

(10) Γ ⊢ τ ′ ⪯ τ
By (8) and inductive hypothesis on (9)

(11) Γ ⊢ el ∼ er ::τ ′

Thus,

(12) δ1 · el ∼ δ2 · er ::τ ′; δ
By (12), (4), (5), and determinism of operational semantics:

(12) v1 ∼ v2 :: PEqτ ′ {el } {er }; δ
By (4), (5), and (13)

(14) δ1 · e1 ∼ δ2 · e2 :: PEqτ ′ {el } {er }; δ
So, by definition of logical relations, Γ ⊢ e1 ∼ e2 :: PEqτ ′ {el } {er }.

□

Lemma B.15 (Constant soundness). Γ ⊢ c ∼ c :: TyCons(c)

Proof. The proof follows the same steps as Theorem B.1. □

Lemma B.16 (Selfification of constants). If Γ ⊢ e ∼ e :: {z:b | r } then Γ ⊢ x ∼ x :: {z:b |

z ==b x}.

Proof. We fix δ ∈ Γ. By hypothesis (v1,v2)/x ∈ δ with v1 ∼ v2 :: {z:b | r }; δ . We need to show

that δ1 · x ∼ δ2 · x :: {z:b | z ==b x}; δ . Which reduces to v1 ∼ v2 :: {z:b | z ==b x}; δ . By the

definition on the logical relation on basic values, we know v1 = v2 = c and ⊢B c ::b. Thus, we are
left to prove that δ1 · ((z ==b x)[c/z]) ↪→∗ true and δ2 · ((z ==b x)[c/z]) ↪→∗ true which, both,

trivially hold by the definition of ==b . □

Lemma B.17 (Variable soundness). If x : τ ∈ Γ, then Γ ⊢ x ∼ x ::τ .

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

Functional Extensionality for Refinement Types 39

Proof. By the definition of the logical relation it suffices to show that ∀δ ∈ Γ.δ1(x) ∼ δ2(x) ::τ ; δ ;
which is trivially true by the definition of δ ∈ Γ. □

Lemma B.18 (Transitivity of Evaluation). If e ↪→∗ e ′, then e ↪→∗ v iff e ′ ↪→∗ v .

Proof. Assume e ↪→∗ v . Since the ↪→ is by definition deterministic, there exists a unique

sequence e ↪→ e1 ↪→ . . . ↪→ ei ↪→ . . . ↪→ v . By assumption, e ↪→∗ e ′, so there exists a j , so e ′ ≡ ej ,
and e ′ ↪→∗ v following the same sequence.

Assume e ′ ↪→∗ v . Then e ↪→∗ e ′ ↪→∗ v uniquely evaluates e to v . □

Lemma B.19 (LR closed under evaluation). If e1 ↪→
∗ e ′

1
, e2 ↪→

∗ e ′
2
, then e ′

1
∼ e ′

2
::τ ; δ iff

e1 ∼ e2 ::τ ; δ .

Proof. Assume e ′
1
∼ e ′

2
::τ ; δ , by the definition of the logical relation on closed terms we have

e ′
1
↪→∗ v1, e

′
2
↪→∗ v2, andv1 ∼ v2 ::τ ; δ . By Lemma B.18 and by assumption, e1 ↪→

∗ e ′
1
and e2 ↪→

∗ e ′
2
,

we have e1 ↪→
∗ v1 and e2 ↪→

∗ v2. By which and v1 ∼ v2 ::τ ; δ we get that e1 ∼ e2 ::τ ; δ . The other
direction is identical. □

Lemma B.20 (LR closed under parallel reduction). If e1 ⇒∗ e ′
1
, e2 ⇒∗ e ′

2
, and e ′

1
∼ e ′

2
::τ ; δ ,

then e1 ∼ e2 ::τ ; δ .

Proof. By induction on τ , using parallel reduction as a backward simulation (Corollary C.15).

□

Lemma B.21 (LR Compositionality). If δ1 ·ex ↪→
∗ vx1

, δ2 ·ex ↪→
∗ vx2

, e1 ∼ e2 ::τ ; δ , (vx1
,vx2

)/x ,
then e1 ∼ e2 ::τ [ex/x]; δ .

Proof. By the assumption we have that

(1) δ1 · ex ↪→
∗ vx1

(2) δ2 · ex ↪→
∗ vx2

(3) e1 ↪→
∗ v1

(4) e2 ↪→
∗ v2

(5) v1 ∼ v2 ::τ ; δ , (vx1,vx2
)/x

and we need to prove that v1 ∼ v2 ::τ [ex/x]; δ . The proof goes by structural induction on the type

τ .

• τ � {z:b | r }. For i = 1, 2 we need to show that if δi , [vxi /x] · r [vi/z] ↪→
∗ true then

δi · r [vi/z][ei/x] ↪→
∗ true. We have δi , [vxi /x] · r [vi/z] ⇒

∗ δi · r [vi/z][ei/x] because
substituting parallel reducing terms parallel reduces (Corollary C.3) and parallel reduction

subsumes reduction (Lemma C.4). By cotermination at constants (Corollary C.17), we have

δi · r [vi/z][ei/x] ↪→
∗ true.

• τ � y:τ ′y → τ ′. We need to show that if v1 ∼ v2 ::y:τ ′y → τ ′; δ , (vx1
,vx2

)/x , then v1 ∼

v2 ::y:τ ′y → τ ′[ex/x]; δ .
We fix vy1

and vy2
so that vy1

∼ vy2
::τ ′y ; δ , (vx1

,vx2
)/x .

Then, we have that v1 vy1
∼ v2 vy2

::τ ′; δ , (vx1
,vx2

)/x , (vy1
,vy2

)/y.
By inductive hypothesis, we have that v1 vy1

∼ v2 vy2
::τ ′[ex/x]; δ , (vy1

,vy2
)/y.

By inductive hypothesis on the fixed arguments, we also get vy1
∼ vy2

::τ ′y [ex/x]; δ .
Combined, we get v1 ∼ v2 ::y:τ ′y → τ ′[ex/x]; δ .

• τ � PEqτ ′ {el } {er }. We need to show that if v1 ∼ v2 :: PEqτ ′ {el } {er }; δ , (vx1
,vx2

)/x , then
v1 ∼ v2 :: PEqτ ′ {el } {er }[ex/x]; δ .
This reduces to showing that if δ1, [vx1

/x] · el ∼ δ2, [vx2
/x] · er ::τ ′; δ , then δ1 · el [ex/x] ∼

δ2 ·er [ex/x] ::τ ′; δ ; we find δ1 ·el [ex/x]⇒∗ δ1, [vx1
/x] ·el and δ2 ·er [ex/x]⇒∗ δ2, [vx2

/x] ·er

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

40 Niki Vazou and Michael Greenberg

because substituting multiple parallel reduction is parallel reduction (Corollary C.3). The

logical relation is closed under parallel reduction (Lemma B.20), and so δ1 · el [ex/x] ∼

δ2 · er [ex/x] ::τ ′; δ .

□

Theorem B.22 (LR Fundamental Property). If Γ ⊢ e :: τ , then Γ ⊢ e ∼ e ::τ .

Proof. The proof goes by induction on the derivation tree:

T-Sub By inversion of the rule we have

(1) Γ ⊢ e :: τ ′

(2) Γ ⊢ τ ′ ⪯ τ
By IH on (1) we have

(3) Γ ⊢ e ∼ e ::τ ′

By (3), (4), and Lemma B.14 we have Γ ⊢ e ∼ e ::τ .
T-Con By Lemma B.15.

T-Self By inversion of the rule, we have:

(1) Γ ⊢ e :: {z:b | r }.
(2) By the IH on (1), we have:

Γ ⊢ e ∼ e :: {z:b | r }.
(3) We fix a δ such that:

δ ∈ Γ and

δ1 · e ∼ δ2 · e :: {z:b | r }; δ
(4) There must exist v1 and v2 such that:

δ1 · e ↪→
∗ v1

δ2 · e ↪→
∗ v2

v1 ∼ v2 :: {z:b | r }; δ
(5) By definition, v1 = v2 = c such that:

⊢B c ::b
δ1 · r [c/x] ↪→

∗ true
δ2 · r [c/x] ↪→

∗ true
(6) We find v1 ∼ v2 :: {z:b | z ==b e}; δ , because:

⊢B c ::b by (5)

δ1 · (z ==b e)[c/z] ↪→∗ true because δ1 · e ↪→
∗ v1 = c by (4)

δ2 · (z ==b e)[c/z] ↪→∗ true because δ2 · e ↪→
∗ v2 = c by (4)

T-Var By inversion of the rule and Lemma B.17.

T-Lam By hypothesis:

(1) Γ ⊢ λx :τx . e :: x :τx → τ
By inversion of the rule we have

(2) Γ,x : τx ⊢ e :: τ
(3) Γ ⊢ τx
By inductive hypothesis on (2) we have

(4) Γ,x : τx ⊢ e ∼ e ::τ
We fix a δ , vx1

, and vx2
so that

(5) δ ∈ Γ
(6) vx1

∼ vx2
::τx ; δ

Let δ ′ � δ , (vx1
,vx2

)/x .
By the definition of the logical relation on open terms, (4), (5), and (6) we have

(7) δ ′
1 · e ∼ δ ′

2 · e ::τ ; δ ′

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

Functional Extensionality for Refinement Types 41

By the definition of substitution

(8) δ1 · e[vx1
/x] ∼ δ2 · e[vx2

/x] ::τ ; δ ′

By the definition of the logical relation on closed expressions

(9) δ1 · e[vx1
/x] ↪→∗ v1, δ2 · e[vx2

/x] ↪→∗ v2, and v1 ∼ v2 ::τ ; δ ′

By the definition and determinism of operational semantics

(10) δ1 · (λx :τx . e) vx1
↪→∗ v1, δ2 · (λx :τx . e) vx2

↪→∗ v2, and v1 ∼ v2 ::τ ; δ ′

By (6) and the definition of logical relation on function values,

(11) δ1 · λx :τx . e ∼ δ2 · λx :τx . e ::x :τx → τ ; δ
Thus, by the definition of the logical relation, Γ ⊢ λx :τx . e ∼ λx :τx . e ::x :τx → τ

T-App By hypothesis:

(1) Γ ⊢ e ex :: τ [ex/x]
By inversion we get

(2) Γ ⊢ e :: x :τx → τ
(3) Γ ⊢ ex :: τx
By inductive hypothesis

(3) Γ ⊢ e ∼ e ::x :τx → τ
(4) Γ ⊢ ex ∼ ex ::τx
We fix a δ ∈ Γ. Then, by the definition of the logical relation on open terms

(5) δ1 · e ∼ δ2 · e :: (x :τx → τ); δ
(6) δ1 · ex ∼ δ2 · ex ::τx ; δ
By the definition of the logical relation on open terms:

(7) δ1 · e ↪→
∗ v1

(8) δ2 · e ↪→
∗ v2

(9) v1 ∼ v2 ::x :τx → τ ; δ
(10) δ1 · ex ↪→

∗ vx1

(11) δ2 · ex ↪→
∗ vx2

(12) vx1
∼ vx2

::τx ; δ
By (7) and (10)

(13) δ1 · e ex ↪→
∗ v1 vx1

By (8) and (11)

(14) δ2 · e ex ↪→
∗ v2 vx2

By (9), (12), and the definition of logical relation on functions:

(15) v1 vx1
∼ v2 vx2

::τ ; δ , (vx1
,vx2

)/x
By (13), (14), (15), and Lemma B.19

(16) δ1 · e ex ∼ δ2 · e ex ::τ ; δ , (vx1
,vx2

)/x
By (10), (11), (16), and Lemma B.21

(17) δ1 · e ex ∼ δ2 · e ex ::τ [ex/x]; δ
So from the definition of logical relations, Γ ⊢ e ex ∼ e ex ::τ [ex/x].

T-Eq-Base By hypothesis:

(1) Γ ⊢ bEqb el er e :: PEqb {el } {er }
By inversion of the rule:

(2) Γ ⊢ el :: τr
(3) Γ ⊢ er :: τl
(4) Γ ⊢ τr ⪯ b
(5) Γ ⊢ τl ⪯ b
(6) Γ, r : τr , l : τl ⊢ e :: {x :() | l ==b r }
By inductive hypothesis on (2), (3), and (6) we have

(7) Γ ⊢ el ∼ el ::τr

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

42 Niki Vazou and Michael Greenberg

(8) Γ ⊢ er ∼ er ::τl
(9) Γ, r : τr , l : τl ⊢ e ∼ e :: {x :() | l ==b r }
We fix δ ∈ Γ. Then (7) and (8) become

(10) δ1 · el ∼ δ2 · el ::τr ; δ
(11) δ1 · er ∼ δ2 · er ::τl ; δ

By the definition of the logical relation on closed terms:

(12) δ1 · el ↪→
∗ vl1

(13) δ2 · el ↪→
∗ vl2

(14) vl1 ∼ vl2 ::τl ; δ
(15) δ1 · er ↪→

∗ vr1

(16) δ2 · er ↪→
∗ vr2

(17) vr1
∼ vr2

::τr ; δ
We define δ ′ � δ , (vr1

,vr2
)/r , (vl1 ,vl2)/l .

By (9), (14), and (17) we have

(18) δ ′
1 · e ∼ δ ′

2 · e :: {x :() | l ==b r }; δ ′

By the definition of the logical relation on closed terms:

(19) δ ′ · e ↪→∗ v1

(20) δ ′ · e ↪→∗ v2

(21) v1 ∼ v2 :: {x :() | l ==b r }; δ ′

By (21) and the definition of logical relation on basic values:

(19) δ ′
1
· (l ==b r) ↪→∗ true

(20) δ ′
2
· (l ==b r) ↪→∗ true

By the definition of ==b
(21) vl1 = vr1

(22) vl2 = vr2

By (14) and (17) and since τl and τr are basic types
(23) vl1 = vl2
(24) vr1

= vr2

By (21) and (24)

(25) vl1 = vr2

By the definition of the logical relation on basic types

(26) vl1 ∼ vr2
::b; δ

By which, (12), (16), and Lemma B.19

(27) δ1 · el ∼ δ2 · er ::b; δ
By (12), (15), and (19)

(28) δ1 · bEqb el er e ↪→
∗ bEqb vl1 vr1

v1

By (13), (16), and (20)

(29) δ2 · bEqb el er e ↪→
∗ bEqb vl2 vr2

v2

By (27) and the definition of the logical relation on EqRT
(30) bEqb vl1 vr1

v1 ∼ bEqb vl2 vr2
v2 :: PEqb {el } {er }; δ .

By (28), (29), and (30)

(31) δ1 · bEqb el er e ∼ δ2 · bEqb el er e :: PEqb {el } {er }; δ .
So, by the definition on the logical relation, Γ ⊢ bEqb el er e ∼ bEqb el er e :: PEqb {el } {er }.

T-Eq-Fun By hypothesis

(1) Γ ⊢ xEqτx :τ→ el er e :: PEqx :τx→τ {el } {er }
By inversion of the rule

(2) Γ ⊢ el :: τr
(3) Γ ⊢ er :: τl

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

Functional Extensionality for Refinement Types 43

(4) Γ ⊢ τr ⪯ x :τx → τ
(5) Γ ⊢ τl ⪯ x :τx → τ
(6) Γ, r : τr , l : τl ⊢ e :: (x :τx → PEqτ {l x} {r x})
(7) Γ ⊢ x :τx → τ
By inductive hypothesis on (2), (3), and (6) we have

(8) Γ ⊢ el ∼ el ::τr
(9) Γ ⊢ er ∼ er ::τl
(10) Γ, r : τr , l : τl ⊢ e ∼ e :: (x :τx → PEqτ {l x} {r x})

By (8), (9), and Lemma B.14

(11) Γ ⊢ el ∼ el ::x :τx → τ
(12) Γ ⊢ er ∼ er ::x :τx → τ

We fix δ ∈ Γ. Then (11), and (12) become

(13) δ1 · el ∼ δ2 · el ::x :τx → τ ; δ
(14) δ1 · er ∼ δ2 · er ::x :τx → τ ; δ

By the definition of the logical relation on closed terms:

(15) δ1 · el ↪→
∗ vl1

(16) δ2 · el ↪→
∗ vl2

(17) vl1 ∼ vl2 ::x :τx → τ ; δ
(18) vl1 ∼ vl2 ::τl ; δ
(19) δ1 · er ↪→

∗ vr1

(20) δ2 · er ↪→
∗ vr2

(21) vr1
∼ vr2

::x :τx → τ ; δ
(22) vr1

∼ vr2
::τr ; δ

We fix vx1
and vx2

so that vx1
∼ vx2

::τx ; δ . Let δx � δ , (vx1
,vx2

)/x .
By the definition on the logical relation on function values, (17) and (21) become

(23) vl1 vx1
∼ vl2 vx2

::τ ; δx
(24) vr1

vx1
∼ vr2

vx2
::τ ; δx

Let δlr � δ , (vr1
,vr2

)/r , (vl1 ,vl2)/l .
By the definition of the logical relation on closed terms, (10) becomes:

(25) δlr · e ↪→
∗ v1

(26) δlr · e ↪→
∗ v2

(27) v1 ∼ v2 ::x :τx → PEqτ {l x} {r x}; δlr
By (27) and the definition of logical relation on function values:

(28) v1 vx1
∼ v2 vx2

:: PEqτ {l x} {r x}; δlr , (vx1
,vx2

)/x
By the definition of the logical relation on EqRT

(29) vl1 vx1
∼ vr2

vx2
::τ ; δlr , (vx1

,vx2
)/x

By the definition of logical relations on function values

(30) vl1 ∼ vr2
::x :τx → τ ; δlr

By (7), l and r do not appear free in the relation, so

(31) vl1 ∼ vr2
::x :τx → τ ; δ

By which, (15), (20), and Lemma B.19

(32) δ1 · el ∼ δ2 · er ::x :τx → τ ; δ
By (15), (19), and (25)

(33) δ1 · xEqτx :τ→ el er e ↪→
∗ xEqτx :τ→ vl1 vr1

v1

By (16), (20), and (26)

(34) δ2 · xEqτx :τ→ el er e ↪→
∗ xEqτx :τ→ vl2 vr2

v2

By (32) and the definition of the logical relation on EqRT
(35) xEqτx :τ→ vl1 vr1

v1 ∼ xEqτx :τ→ vl2 vr2
v2 :: PEqx :τx→τ {el } {er }; δ .

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

44 Niki Vazou and Michael Greenberg

By (33), (34), and (35)

(36) δ1 · xEqτx :τ→ el er e ∼ δ2 · xEqτx :τ→ el er e :: PEqx :τx→τ {el } {er }; δ .
So, by the definition on the logical relation, Γ ⊢ xEqτx :τ→ el er e ∼ xEqτx :τ→ el er e :: PEqx :τx→τ {el } {er }.

□

B.5 The Logical Relation and the EqRT Type are Equivalence Relations
Theorem B.23 (The logical relation is an eqivalence relation). Γ ⊢ e1 ∼ e2 ::τ is reflexive,

symmetric, and transivite.

• Reflexivity: If Γ ⊢ e :: τ , then Γ ⊢ e ∼ e ::τ .
• Symmetry: If Γ ⊢ e1 ∼ e2 ::τ , then Γ ⊢ e2 ∼ e1 ::τ .
• Transitivity: If Γ ⊢ e2 :: τ and Γ ⊢ e1 ∼ e2 ::τ and Γ ⊢ e2 ∼ e3 ::τ , then Γ ⊢ e1 ∼ e3 ::τ .

Proof. Reflexivity: This is exactly the Fundamental Property B.22.

Symmetry: Let ¯δ be defined such that
¯δ1(x) = δ2(x) and ¯δ2(x) = δ1(x). First, we prove that

v1 ∼ v2 ::τ ; δ implies v2 ∼ v1 ::τ ;
¯δ , by structural induction on τ .

• τ � {z:b | r }. This case is immediate: we have to show that c ∼ c :: {z:b | r }; ¯δ given

c ∼ c :: {z:b | r }; δ . But the definition in this case is itself symmetric: the predicate goes to

true under both substitutions.

• τ � x :τ ′x → τ ′. We fix vx1
and vx2

so that

(1) vx1
∼ vx2

::τ ′x ; δ
By the definition of logical relations on open terms and inductive hypothesis

(2) vx2
∼ vx1

::τ ′x ;
¯δ

By the definition on logical relations on functions

(3) v1 vx1
∼ v2 vx2

::τ ′; δ , (vx1
,vx2

)/x
By the definition of logical relations on open terms and since the expressions v1 vx1

and

v2 vx2
are closed, By the inductive hypothesis on τ ′:

(4) v2 vx2
∼ v1 vx1

::τ ′; ¯δ ,x : τ ′x
By (2) and the definition of logical relations on open terms

(5) v2 vx2
∼ v1 vx1

::τ ′; ¯δ , (vx2
,vx1

)/x
By the definition of the logical relation on functions, we conclude that v2 ∼ v1 ::x :τ ′x → τ ′; ¯δ

• τ � PEqτ ′ {el } {er }. By assumption,

(1) v1 ∼ v2 :: PEqτ ′ {el } {er }; δ
By the definition of the logical relation on EqRT types

(2) δ1 · el ∼ δ2 · er ::τ ′; δ
i.e., δ1 · (el) ↪→

∗ vl and similarly for vr such that vl ∼ vr ::τ ′; δ .
By the IH on τ ′, we have:

(3) vr ∼ vl ::τ ′; ¯δ
And so, by the definition of the LR on equality proofs:

(4) v2 ∼ v1 :: PEqτ ′ {el } {er }; ¯δ

Next, we show that δ ∈ Γ implies
¯δ ∈ Γ. We go by structural induction on Γ.

• Γ = ·. This case is trivial.

• Γ = Γ′,x : τ . For x : τ , we know that δ1(x) ∼ δ2(x) ::τ ; δ . By the IH on τ , we find δ2(x) ∼
δ1(x) ::τ ;

¯δ , which is just the same as
¯δ1(x) ∼ ¯δ2(x) ::τ ;

¯δ . By the IH on Γ′, we can use similar

reasoning to find
¯δ1(y) ∼ ¯δ2(y) ::τ ′; ¯δ for all y : τ ′ ∈ Γ′.

Now, suppose Γ ⊢ e1 ∼ e2 ::τ ; we must show Γ ⊢ e2 ∼ e1 ::τ . We fix δ ∈ Γ; we must show

δ1 · e2 ∼ δ2 · e1 ::τ ; δ , i.e., there must exist v1 and v2 such that δ1 · e2 ↪→
∗ v2 and δ2 · e1 ↪→

∗ v1 and

v2 ∼ v1 ::τ ; δ . We have δ ∈ Γ, and so
¯δ ∈ Γ by our second lemma. But then, by assumption, we

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

Functional Extensionality for Refinement Types 45

have v1 and v2 such that
¯δ1 · e1 ↪→

∗ v1 and
¯δ2 · e2 ↪→

∗ v2 and v1 ∼ v2 ::τ ;
¯δ . Our first lemma then

yields v2 ∼ v1 ::τ ; δ as desired.

Transitivity: First, we prove an inner property: if δ ∈ Γ and v1 ∼ v2 ::τ ; δ and v2 ∼ v3 ::τ ; δ ,
then v1 ∼ v3 ::τ ; δ . We go by structural induction on the type index τ .

• τ � {z:b | r }. Here all of the values must be the fixed constant c . Furthermore, we must have

δ1 · r [c/x] ↪→
∗ true and δ2 · r [c/x] ↪→

∗ true, so we can immediately find v1 ∼ v3 ::τ ; δ .
• τ � x :τ ′x → τ ′.
Let vl ∼ vr ::τ ′x ; δ be given. We must show that v1 ∼ v3 ::τ ; δ , (vl ,vr)/x . We know by

assumption that: v1 vl ∼ v2 vr ::τ ′; δ , (vl ,vr)/x and v2 vl ∼ v3 vr ::τ ′; δ , (vl ,vr)/x . By the

IH on τ ′, we find v1 vl ∼ v3 vr ::τ ′; δ , (vl ,vr)/x ; which gives v1 ∼ v3 ::τ ; δ , (vl ,vr)/x .
• τ � PEqτ ′ {el } {er }.
To find v1 ∼ v3 :: PEqτ {el } {er }; δ , we merely need to find that δ1 · el ∼ δ2 · er ::τ ; δ , which
we have by inversion on v1 ∼ v2 :: PEqτ {el } {er }; δ .

With our proof that the value relation is transitive in hand, we turn our attention to the open

relation. Suppose Γ ⊢ e1 ∼ e2 ::τ and Γ ⊢ e2 ∼ e3 ::τ ; we want to see Γ ⊢ e1 ∼ e3 ::τ . Let δ ∈ Γ be

given. We have δ1 · e1 ∼ δ2 · e2 ::τ ; δ and δ1 · e2 ∼ δ2 · e3 ::τ ; δ . By the definition of the logical

relations, we have δ1 · e1 ↪→
∗ v1, δ2 · e2 ↪→

∗ v2, δ1 · e2 ↪→
∗ v ′

2
, δ2 · e3 ↪→

∗ v3, v1 ∼ v2 ::τ ; δ , and
v ′

2
∼ v3 ::τ ; δ .
Moreover, we know that e2 is well typed, so by the fundamental theorem (Theorem B.22), we

know that Γ ⊢ e2 ∼ e2 ::τ , and so v2 ∼ v ′
2

::τ ; δ .
By our transitivity lemma on the value relation, we can find thatv1 is equivalent tov2 is equivalent

to v ′
2
is equivalent to v3, and so v1 ∼ v3 ::τ ; δ .

□

pf : e → e → τ
pf(l , r ,b) = {x :() | l ==b r }

pf(l , r ,x :τx → τ) = x :τx → PEqτ {l x} {r x}

Our propositional equality PEqτ {el } {er } is a reflection of the logical relation, so it is unsurprising
that it is also an equivalence relation. We can prove that our propositional equality is treated

as an equivalence relation by the syntactic type system. There are some tiny wrinkles in the

syntactic system: symmetry and transitivity produce normalized proofs, but reflexivity produces

unnormalized ones in order to generate the correct invariant types τl and τr in the base case.

Theorem B.24 (EqRT is an eqivalence relation). PEqτ {e1} {e2} is reflexive, symmetric, and

transitive on equable types. That is, for all τ that contain only refinements and functions:

• Reflexivity: If Γ ⊢ e :: τ , then there exists ep such that Γ ⊢ ep :: PEqτ {e} {e}.
• Symmetry: ∀Γ,τ , e1, e2,v12. if Γ ⊢ v12 :: PEqτ {e1} {e2}, then there exists v21 such that Γ ⊢ v21 ::

PEqτ {e2} {e1}.

• Transitivity: ∀Γ,τ , e1, e2, e3,v12,v23. if Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3},

then there exists v13 such that Γ ⊢ v13 :: PEqτ {e1} {e3}.

Proof. Reflexivity: We strengthen the IH, simultaneously proving that there exist ep , epf and
Γ ⊢ τl ⪯ τ and Γ ⊢ τr ⪯ τ such that Γ, l : τl , r : τr ⊢ epf :: pf(e, e,τ) and Γ ⊢ ep :: PEqτ {e} {e} by
induction on τ , leaving e general.

• τ � {x :b | e ′}.
(1) Let epf = ().

(2) Let ep = bEqb e e epf .
(3) Let τl = τr = {x :b | x ==b e}.

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

46 Niki Vazou and Michael Greenberg

(4) We have Γ ⊢ x ==b e ⪯ τ by S-Base and semantic typing.

(5) We find Γ ⊢ ep :: PEqb {e} {e} by T-Eq-Base, with el = er = e . We must show:

(a) Γ ⊢ el :: τl and Γ ⊢ er :: τr , i.e., Γ ⊢ e :: {x :b | x ==b e};
(b) Γ ⊢ τr ⪯ {x :b | true} and Γ ⊢ τl ⪯ {x :b | true}; and
(c) Γ, r : τr , l : τl ⊢ epf :: {x :() | l ==b r }.

(6) We find (5a) by T-Self.

(7) We find (5b) immediately by S-Base.

(8) We find (5c) by T-Var, using T-Sub to see that if l , r : {x :b | x ==b e} then unit will be

typeable at the refinement where both l and r are equal to e .
• τ � x :τx → τ ′.
(1) Γ,x : τx ⊢ e x :: τ [x/x] by T-App and T-Var, noting that τ [x/x] = τ .
(2) By the IH on Γ,x : τx ⊢ e x :: τ ′[x/x] = τ ′, there exist e ′p , e

′
pf ,τ

′
l , and τ

′
r such that:

(a) x : τx ⊢ τ ′l ⪯ τ and x : τx ⊢ τ ′r ⪯ τ ;
(b) Γ,x : τx , l : τ ′l , r : τ ′r ⊢ e

′
pf :: pf(e x , e x ,τ

′); and

(c) Γ,x : τx ⊢ e ′p :: PEqτ ′ {e x} {e x}.
(3) Ifτ ′ = {x :() | τ ′}e xe x , then pf(e x , ex ,b) = {x :() | ex ==b ex}; otherwise, pf(l , r ,x :τx →

τ) = x :τx → PEqτ {e x} {e x}.
In the former case, let e ′′pf = bEqb (e x)(e x)e ′pf . In the latter case, let e ′′pf = e ′pf .

Either way, we have Γ,x : τx , l : τ ′l , r : τ ′r ⊢ e ′′pf :: PEqτ ′ {e x} {e x} by T-Eq-Base or

T-Eq-Fun, respectively.

(4) Let epf = x :τx → e ′′pf .

(5) Let ep = xEqx :τx→τ e e epf .
(6) Let el = er = e and τl = x :τx → τ ′l and τr = x :τx → τ ′r .
(7) We find subtyping by S-Fun and (2a).

(8) By T-Eq-Fun. We must show:

(a) Γ ⊢ el :: τl and Γ ⊢ er :: τr ;
(b) Γ ⊢ τl ⪯ x :τx → τ and Γ ⊢ τr ⪯ x :τx → τ ;
(c) Γ, r : τr , l : τl ⊢ epf :: (x :τx → PEqτ {l x} {r x})
(d) Γ ⊢ x :τx → τ

(9) We find (8a) by assumption, T-Sub, and (7).

(10) We find (8b) by (7).

(11) We find (8c) by T-Lam and (2b).

• τ � PEqτ ′ {e1} {e2}. These types are not equable, so we ignore them.

Symmetry: By induction on τ .

• τ � {x :b | e}.
(1) We have Γ ⊢ v12 :: PEqb {e1} {e2}.

(2) By canonical forms, v12 = bEqb el er vp such that Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl
and τr that are refinements of b) and Γ, r : τr , l : τl ⊢ vp :: {x :() | l ==b r } (Lemma B.12).

(3) Let v21 = bEqb er el vp .
(4) By T-Eq-Base, swapping τl and τr from (2). We already have appropriate typing and

subtyping derivations; we only need to see Γ, l : τl , r : τr ⊢ vp :: {x :() | r ==b l}.
(5) We have Γ, l : τl , r : τr ⊢ {x :() | r ==b l} ⪯ {x :() | l ==b r } by S-Base and symmetry of

(==b).

• τ � x :τx → τ ′.
(1) We have Γ ⊢ v12 :: PEqx :τx→τ ′ {e1} {e2}.

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

Functional Extensionality for Refinement Types 47

(2) By canonical forms, v12 = xEqx :τ ′x→τ ′′ el er vp such that τx ⊢ τ ′x ⪯ and τ ′′ ⊢ τ ′ ⪯ and
Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl and τr that are subtypes of x :τ ′x → τ ′′) and
Γ, r : τr , l : τl ⊢ vp :: x :τ ′x → PEqτ ′′ {l x} {r x}.

(3) By canonical forms, this time on vp from (2), vp = T-Lamxτ ′xep such that Γ ⊢ τx ⪯ τ ′x and

Γ, r : τr , l : τl ,x : τ ′x ⊢ e :: τ ′′′ such that Γ, r : τr , l : τl ,x : τ ′x ⊢ τ ′′′ ⪯ PEqτ ′′ {l x} {r x}.
(4) By T-Sub, (3), and the IH on PEqτ ′′ {l x} {r x}, we know there exists some e ′p such that

Γ, l : τl , r : τr ,x : τ ′x ⊢ e ′p :: PEqτ ′′ {r x} {l x}.
(5) Let v ′

p = x :τ ′x → e ′p .
(6) By (4) and T-Lam, and T-Sub (using subtyping from (3) and (2)), Γ, l : τl , r : τr ⊢ v ′

p ::

PEqx :τx→τ ′ {er x} {el x}.
(7) Let v21 = xEqx :τx→τ ′ er el v

′
p .

(8) By T-Eq-Base, with (6) for the proof and (3) and (2) for the rest.

• τ � PEqτ ′ {e1} {e2}. These types are not equable, so we ignore them.

Transitivity: By induction on τ .

• τ � {x :b | e}.
(1) We have Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3}.

(2) By canonical forms, v12 = bEqb e1 e2 v
′
12
such that Γ ⊢ e1 :: τ1 and Γ ⊢ e2 :: τ2 (for some τ1

and τ2 that are refinements of b) and Γ, r : τ2, l : τ1 ⊢ v
′
12

:: {x :() | l ==b r }. and, similarly,

v23 = bEqb e1 e2 v
′
23

such that Γ ⊢ e2 :: τ ′
2
and Γ ⊢ e3 :: τ3 (for some τ ′

2
and τ3 that are

refinements of b) and Γ, r : τ3, l : τ ′
2
⊢ v ′

23
:: {x :() | l ==b r }.

(3) By canonical forms again, we know that v ′
12
= v ′

23
= unit and we have:

Γ, r : τ2, l : τ1 ⊢ {x :() | x ==() unit} ⪯ {x :b | {x :() | l ==b r }}, and
Γ, r : τ3, l : τ ′

2
⊢ {x :() | x ==() unit} ⪯ {x :b | {x :() | l ==b r }}.

(4) Elaborating on (3), we know that ∀θ ∈ [| Γ, r : τ2, l : τ1 |], we have:[
|θ · {x :() | x ==() unit} |

]
⊆ [|θ · {x :() | l ==b r } |]

and ∀θ ∈
[
| Γ, r : τ3, l : τ ′

2
|
]
, we have:[

|θ · {x :() | x ==() unit} |
]
⊆ [|θ · {x :() | l ==b r } |] .

(5) Since {x :() | x ==() unit} contains all computations that terminate with unit in all mod-

els (Theorem B.1), the right-hand sides of the equations must also hold all unit computations.

That is, all choices for l and r2 (resp. l and r) that are semantically well typed are necessarily

equal.

(6) By (5), we can infer that in any given model, τ1, τ2, τ
′
2
, and τ3 identify just one b-constant.

Why must τ2 and τ
′
2
agree? In particular, e2 has both of those types, but by semantic sound-

ness (Theorem B.2), we know that it will go to a value in the appropriate type interpretation.

By determinism of evaluation, we know it must be the same value. We can therefore con-

clude that ∀θ ∈ [| Γ, r : τ3, l : τ1 |],
[
|θ · {x :() | x ==() unit} |

]
⊆ [|θ · {x :() | l ==b r } |].

(7) By T-Eq-Base, using τ1 and τ3 and unit as the proof. We need to show Γ, r : τ3, l : τ1 ⊢

unit :: {x :() | l ==b r }; all other premises follow from (2).

(8) By T-Sub and S-Base, using (6) for the subtyping.

• τ � x :τx → τ ′.
(1) We have Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3}.

(2) By canonical forms, we have

v12 = xEqx :τx→τ ′ e1 e2 v
′
12

v23 = xEqx :τx→τ ′ e2 e3 v
′
23

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

48 Niki Vazou and Michael Greenberg

where there exist types τ1, τ2, τ
′
2
, and τ3 subtypes of x :τx → τ ′ such that

Γ ⊢ e1 :: τ1 Γ ⊢ e2 :: τ2

Γ ⊢ e2 :: τ
′
2

Γ ⊢ e3 :: τ3

and there exist types τx12
, τx23

, τ ′
12
, and τ ′

23
such that

Γ, r : τ2, l : τ1 ⊢ vp12
:: x :τx12

→ PEqτ ′
12

{l x} {r x},

Γ, r : τ2, l : τ1 ⊢ τx ⪯ τx12
,

Γ, r : τ2, l : τ1,x : τx ⊢ τ ′
12

⪯ τ ′,
Γ, r : τ3, l : τ ′

2
⊢ vp23

:: x :τ ′x → PEqτ ′
23

{l x} {r x},

Γ, r : τ3, l : τ ′
2
⊢ τx ⪯ τx23

, and
Γ, r : τ3, l : τ ′

2
,x : τx ⊢ τ ′

23
⪯ τ ′.

(3) By canonical forms on vp12
and vp23

from (2), we know that:

vp12
= λx :τx12

. e ′
12

vp23
= λx :τx23

. e ′
23

such that:

Γ, r : τ2, l : τ1,x : τx12
⊢ e ′

12
:: τ ′′

12
,

Γ, r : τ2, l : τ1,x : τx12
⊢ τ ′′

12
⪯ τ ′

12
,

Γ, r : τ3, l : τ ′
2
,x : τx23

⊢ e ′
23

:: τ ′′
23
,

Γ, r : τ3, l : τ ′
2
,x : τx23

⊢ τ ′′
23

⪯ τ ′
23
, and

(4) By strengthening (Lemma B.7) using (2), we can replace x ’s type with τx in both proofs, to

find:

Γ, r : τ2, l : τ1,x : τx ⊢ e ′
12

:: τ ′
12
, and

Γ, r : τ3, l : τ ′
2
,x : τx ⊢ e ′

23
:: τ ′

23
.

Then, by T-Sub, we can relax the type of the proof bodies:

Γ, r : τ2, l : τ1,x : τx ⊢ e ′
12

:: τ ′, and
Γ, r : τ3, l : τ ′

2
,x : τx ⊢ e ′

23
:: τ ′.

(5) By (4, (3), and the IH on PEqτ ′ {l x} {r x}, we know there exists some proof body e ′
13
such

that Γ, r : τ3, l : τ1 ⊢ e
′
13

:: PEqτ ′ {l x} {r x}.
(6) Let vp = x :τx → e ′

13
.

(7) By (5), and T-Lam.

(8) Let v13 = xEqx :τx→τ ′ e1 e3 vp .
(9) By T-Eq-Base, with (7) for the proof and (2) for the rest.

• τ � PEqτ ′ {e1} {e2}. These types are not equable, so we ignore them. □

C PARALLEL REDUCTION AND COTERMINATION
The conventional application rule for dependent types substitutes a term into a type, finding

e1 e2 : τ [e2/x] when e1 : x :τx → τ . We define two logical relations: a unary interpretation of types

(Figure 4) and a binary logical relation characterizing equivalence (Figure 6). Both of these logical

relations are defined as fixpoints on types. The type index poses a problem: the function case

of these logical relations quantify over values in the relation, but we sometimes need to reason

about expressions, not values. If e ↪→∗ v , are τ [e/x] and τ [v/x] treated the same by our logical

relations? We encounter this problem in particular in proof of logical relation compositionality,

which is precisely about exchanging expressions in types with the values the expressions reduce to

in closing substitutions: for the unary logical relation and binary logical relation (Lemma B.21).

The key technical device to prove these compositionality lemmas is parallel reduction (Figure 13).

Parallel reduction generalizes our call-by-value relation to allowmultiple steps at once, throughout a

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

Functional Extensionality for Refinement Types 49

term—even under a lambda. Parallel reduction is a bisimulation (Lemma C.5 for forward simulation;

Corollary C.15 for backward simulation). That is, expressions that parallel reduce to each other go

to identical constants or expressions that themselves parallel reduce, and the logical relations put

terms that parallel reduce in the same equivalence class.

To prove the compositionality lemmas, we first show that (a) the logical relations are closed

under parallel reduction (for the unary relation and Lemma B.20 for the binary relation) and (b) use

the backward simulation to change values in the closing substitution to a substituted expression in

the type.

Our proof comes in three steps. First, we establish some basic properties of parallel reduction

(§C.1). Next, proving the forward simulation is straightforward (§C.2): if e1 ⇒ e2 and e1 ↪→ e ′
1
,

then either parallel reduction contracted the redex for us and e ′
1
⇒ e2 immediately, or the redex is

preserved and e2 ↪→ e ′
2
such that e ′

1
⇒ e ′

2
. Proving the backward simulation is more challenging

(§C.3). If e1 ⇒ e2 and e2 ↪→ e ′
2
, the redex contracted in e2 may not yet be exposed. The trick

is to show a tighter bisimulation, where the outermost constructors are always the same, with

the subparts parallel reducing. We call this relation congruence (Figure 14); it’s a straightforward

restriction of parallel reduction, eliminating β , eq1, and eq2 as outermost constructors (but allowing

them deeper inside). The key lemma shows that if e1 ⇒ e2, then there exists e ′
1
e1 ↪→

∗ e ′
1
such

that e ′
1

⇝⇝ e2 (Lemma C.11). Once we know that parallel reduction implies reduction to congruent

terms, proving that congruence is a backward simulation allows us to reason “up to congruence”.

In particular, congruence is a sub-relation of parallel reduction, so we find that parallel reduction is

a backward simulation. Finally, we can show that e1 ⇒ e2 implies observational equivalence (§C.4);

for our purposes, it suffices to find cotermination at constants (Corollary C.17).

One might think, in light of Takahashi’s explanation of parallel reduction [Takahashi 1989],

that the simulation techniques we use are too powerful for our needs: why not simply rely on the

Church-Rosser property and confluence, which she proves quite simply? Her approach works well

when relating parallel reduction to full β-reduction (and/or η-reduction): the transitive closure
of her parallel reduction relation is equal to the transitive closure of plain β-reduction (resp. η-
and βη-reduction). But we’re interested in programming languages, so our underlying reduction

relation isn’t full β : we use call-by-value, and we will never reduce under lambdas. But even if we

were call-by-name, we would have the same issue. Parallel reduction implies reduction, but not to

the same value, as in her setting. Parallel reduction yields values that are equivalent, up to parallel

reduction and congruence (see, e.g., Corollary C.13).

C.1 Basic Properties
Lemma C.1 (Parallel reduction is reflexive). For all e and τ , e ⇒ e and τ ⇒ τ .

Proof. By mutual induction on e and τ .

Expressions.

• e � x . By var.

• e � c . By const.

• e � λx :τ . e ′. By the IHs on τ and e ′ and lam.

• e � e1 e2. By the IH on e1 and e2 and app.

• e � bEqb el er e
′
. By the IHs on el , er , and e

′
and beq.

• e � xEqx :τx→τ el er e
′
. By the IHs on τx , τ , el , er , and e

′
and xeq.

Types.

• τ � {x :b | r }. By the IH on r (an expression) and ref.

• τ � x :τx → τ ′. By the IHs on τx and τ ′ and fun.

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

50 Niki Vazou and Michael Greenberg

e ⇒ e

x ⇒ x
var

c ⇒ c
const

τ ⇒ τ ′ e ⇒ e ′

λx :τ . e ⇒ λx :τ ′. e ′
lam

e1 ⇒ e ′
1

e2 ⇒ e ′
2

e1 e2 ⇒ e ′
1
e ′

2

app

e ⇒ e ′ v ⇒ v ′

(λx :τ . e) v ⇒ e ′[v ′/x]
β

(==b) c1 ⇒ (==(c1,b))
eq1

(==(c1,b)) c2 ⇒ c1 = c2

eq2

el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

bEqb el er e ⇒ bEqb e
′
l e

′
r e

′
beq

τx ⇒ τ ′x τ ⇒ τ ′ el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

xEqx :τx→τ el er e ⇒ xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
xeq

τ ⇒ τ

r ⇒ r ′

{x :b | r } ⇒ {x :b | r ′}
ref

τx ⇒ τ ′x τ ⇒ τ ′

x :τx → τ ⇒ x :τ ′x → τ ′
fun

τ ⇒ τ ′ el ⇒ e ′l er ⇒ e ′r

PEqτ {el } {er } ⇒ PEqτ ′ {e
′
l } {e

′
r }

eq

Fig. 13. Parallel reduction in terms and types.

• τ � PEqτ ′ {el } {er }. By the IHs on τ ′, el , and er and eq. □

Lemma C.2 (Parallel reduction is substitutive). If e ⇒ e ′, then:

(1) If e1 ⇒ e2, then e1[e/x]⇒ e2[e
′/x].

(2) If τ1 ⇒ τ2, then τ1[e/x]⇒ τ2[e
′/x].

Proof. By mutual induction on e1 and τ1.

Expressions.

var y ⇒ y. If y , x , then the substitution has no effect and the case is trivial. If y = x , then
x[e/x] = e and we have e ⇒ e ′ by assumption. We have e ⇒ e by reflexivity (Lemma C.1).

const c ⇒ c . This case is trivial: the substitution has no effect.

lam λy:τ . e ′ ⇒ λy:τ . e ′′. If y , x , then by the IH on e ′ and lam. If y = x , then the substitution has

no effect and the case is trivial.

app e11 e12 ⇒ e21 e22, where e1i ⇒ e2i for i = 1, 2. By the IHs on e1i and app.

beta (λy:τ . e ′) v ⇒ e ′[v ′/y], where e ′ ⇒ e ′′ and v ⇒ v ′
. If y , x , then (λy:τ . e ′[e/x]) v[e/x]⇒

e ′′[e/x][v ′[e/x]/y] by β . Since y , x , e ′′[e/x][v ′[e/x]/y] = e ′′[v ′/y][e/x] as desired.
If y = x , then the substitution in the lambda has no effect, and we find (λx :τ . e ′) v[e/x]⇒
e ′′[v ′[e/x]/x] by β . We have e ′′[v ′[e/x]/x] = e ′′[v ′/x][e/x] as desired.

eq1 (==b) c1 ⇒ (==(c1,b)). This case is trivial by eq1, as the substitution has no effect.

eq2 (==(c1,b)) c2 ⇒ c1 = c2. This case is trivial by eq2, as the substitution has no effect.

beq bEqb el er ep ⇒ bEqb e
′
l e

′
r e

′
p , where el ⇒ e ′l and er ⇒ e ′r and ep ⇒ e ′p . By the IHs on el , er ,

and ep and beq.

xeq xEqx :τx→τ el er ep ⇒ xEqx :τx→τ e ′l e
′
r e

′
p , where el ⇒ e ′l and er ⇒ e ′r and ep ⇒ e ′p . By the

IHs on el , er , and ep and xeq.

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

Functional Extensionality for Refinement Types 51

Types.

ref {y:b | r } ⇒ {y:b | r ′} where r ⇒ r ′. If y , x , then r [e/x]⇒ r ′[e ′/x] by the IH on r ; we are
done by ref.

If y = x , then the substitution has no effect, and the case is immediate by reflexivity

(Lemma C.1).

fun y:τy → τ ⇒ y:τ ′y → τ ′ where τy ⇒ τ ′y and τ ⇒ τ ′. If y , x , then by the IH on τy and τ and

fun.

If y = x , then the substitution only has effect in the domain. The IH on τy finds τy [e/x]⇒
τ ′y [e

′/x] in the domain; reflexivity covers the codomain (Lemma C.1), and we are done by

fun.

eq PEqτ {el } {er } ⇒ PEqτ ′ {e
′
l } {e

′
r }. By the IHs and eq. □

Corollary C.3 (Substituting multiple parallel reduction is parallel reduction). If

e1 ⇒∗ e2, then e[e1/x]⇒∗ e[e2/x].

Proof. First, notice that e ⇒ e by reflexivity (Lemma C.1). By induction on e1 ⇒∗ e2, using

reflexivity in the base case (Lemma C.1); the inductive step uses substituting parallel reduction

(Lemma C.2) and the IH. □

Lemma C.4 (Parallel reduction subsumes reduction). If e1 ↪→ e2 then e1 ⇒ e2.

Proof. By induction on the evaluation derivation, using reflexivity of parallel reduction to cover

expressions and types that didn’t step (Lemma C.1).

ctx E[e] ↪→ E[e ′], where e ↪→ e ′. By the IH, e ⇒ e ′. By structural induction on E.

– E � •. By the outer IH.

– E � E1 e2. By the inner IH on E1, reflexivity on e2, and app.

– E � v1 E2. By reflexivity on v1, the inner IH on E2, and app.

– E � bEqb el er E
′
. By reflexivity on el and er , the inner IH on and E ′

, and beq.

– E � xEqx :τx→τ el er E
′
. By reflexivity on τx , τ , el and er , the inner IH on and E ′

, and xeq.

β (λx :τ . e) v ↪→ e[v/x]. By reflexivity (Lemma C.1, e ⇒ e and v ⇒ v . By beta, (λx :τ . e) v ⇒
e[v/x].

eq1 By eq1.

eq2 By eq2. □

C.2 Forward Simulation
Lemma C.5 (Parallel reduction is a forward simulation). If e1 ⇒ e2 and e1 ↪→ e ′

1
, then

there exists e ′
2
such that e2 ↪→

∗ e ′
2
and e ′

1
⇒ e ′

2
.

Proof. By induction on the derivation of e1 ↪→ e ′
1
, leaving e2 general.

ctx By structural induction on E, using reflexivity (Lemma C.1) on parts where the IH doesn’t

apply.

– E � •. By the outer IH on the actual step.

– E � E1 e2. By the IH on E1, reflexivity on e2, and app.

– E � v1 E2. By reflexivity on v1, the IH on E2, and app.

– E � bEqb el er E
′
. By reflexivity on el and er , the IH on E ′

, and beq.

– E � xEqx :τx→τ el er E
′
. By reflexivity on τx , τ , el and er , the IH on E ′

, and xeq.

β (λx :τ . e) v ↪→ e[v/x]. One of two rules could have applied to find e1 ⇒ e2: app or β .

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

52 Niki Vazou and Michael Greenberg

In the app case, we have e2 = (λx :τ ′. e ′) v ′
where τ ⇒ τ ′ and e ⇒ e ′ and v ⇒ v ′

. Let

e ′
2
= e ′[v ′/x]. We find e2 ↪→

∗ e ′
2
in one step by β . We find e[v/x]⇒ e ′[v ′/x] by substitutivity

of parallel reduction (Lemma C.2).

In the β case, we have e2 = e ′[v ′/x] such that e ⇒ e ′ and v ⇒ v ′
. Let e ′

2
= e2. We find

e2 ↪→
∗ e ′

2
in no steps at all; we find e ′

1
⇒ e ′

2
by substitutivity of parallel reduction (Lemma C.2).

eq1 (==b) c1 ↪→ (==(c1,b)). One of two rules could have applied to find (==b) c1 ⇒ e2: app or

eq1.

In the app case, we must have e2 = e1 = (==b) c1, because there are no reductions available

in these constants. Let e ′
2
= (==(c1,b)). We find e2 ↪→

∗ e ′
2
in a single step by our assumption

(or eq1). We find parallel reduction by reflexivity (Lemma C.1).

In the eq2 case, we have e2 = e ′
1
= (==(c1,b)). Let e

′
2
= e2. We find e2 ↪→

∗ e ′
2
in no steps at all.

We find parallel reduction by reflexivity (Lemma C.1).

eq2 (==(c1,b)) c2 ↪→ c1 = c2. One of two rules could have applied to find (==(c1,b)) c2 ⇒ e2: app

or eq2.

In the app case, we have e2 = e1 = (==(c1,b)) c2, because there are no reductions available

in these constants. Let e ′
2
� c1 = c2, i.e. true when c1 = c2 and false otherwise. We find

e2 ↪→
∗ e ′

2
in a single step by our assumption (or eq2). We find parallel reduction by reflexivity

(Lemma C.1).

In the eq2 case, we have e2 = e ′
1
� c1 = c2, i.e. true when c1 = c2 and false otherwise.

Let e ′
2
= e2. We find e2 ↪→

∗ e ′
2
in no steps at all. We find parallel reduction by reflexivity

(Lemma C.1). □

C.3 Backward Simulation
Lemma C.6 (Reduction is substitutive). If e1 ↪→ e2, then e1[e/x] ↪→ e2[e/x].

Proof. By induction on the derivation of e1 ↪→ e2.

ctx By structural induction on E.

– E � •. By the outer IH.

– E � E1 e2. By the IH on E1 and ctx.

– E � v1 E2. By the IH on E2 and ctx.

– E � bEqb el er E
′
. By the IH on E ′

and ctx.

– E � xEqx :τx→τ el er E
′
. By the IH on E ′

and ctx.

β (λy:τ . e ′) v ↪→ e ′[v/y]. We must show (λy:τ . e ′)[e/x] v[e/x] ↪→ e ′[v/y][e/x].
The exact result depends on whether y = x . If y , x , the substitution goes through,

and we have (λy:τ . e ′)[e/x] = λy:τ [e/x]. e ′[e/x]. By β , (λy:τ [e/x]. e ′[e/x]) v[e/x] ↪→
e ′[e/x][v[e/x]/y]. But e ′[e/x][v[e/x]/y] = e ′[v/y][e/x], and we are done.

If, on the other hand, y = x , then the substitution has no effect in the body of the lambda, and

(λy:τ . e ′)[e/x] = λy:τ [e/x]. e ′. By β again, we find (λy:τ [e/x]. e ′) v[e/x] ↪→ e ′[v[e/x]/y].
Since y = x , we really have e ′[v[e/x]/x] which is the same as e ′[v/x][e/x] = e ′[v/y][e/x],
as desired.

eq1 The substitution has no effect; immediate, by eq1.

eq2 The substitution has no effect; immediate, by eq2. □

Corollary C.7 (Multi-step reduction is substitutive). If e1 ↪→
∗ e2, then e1[e/x] ↪→

∗ e2[e/x].

Proof. By induction on the derivation of e1 ↪→
∗ e2. The base case is immediate (e1 = e2, and we

take no steps). The inductive case follows by the IH and single-step substitutivity (Lemma C.6). □

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

Functional Extensionality for Refinement Types 53

x ⇝⇝ x
var

c ⇝⇝ c
const

τ ⇒ τ ′ e ⇒ e ′

λx :τ . e ⇝⇝ λx :τ ′. e ′
lam

e1 ⇒ e ′
1

e2 ⇒ e ′
2

e1 e2
⇝⇝ e ′

1
e ′

2

app

el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

bEqb el er e ⇝⇝ bEqb e
′
l e

′
r e

′
beq

τx ⇒ τ ′x τ ⇒ τ ′ el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

xEqx :τx→τ el er e ⇝⇝ xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
xeq

Fig. 14. Term congruence.

We say terms are congruent when they (a) have the same outermost constructor and (b) their

subparts parallel reduce to each other.
7
That is,

⇝⇝⊆⇒, where the outermost rule must be one of

var, const, lam, app, beq, or xeq and cannot be a real reduction like β , eq1, or eq2.
Congruence is a key tool in proving that parallel reduction is a backward simulation. Parallel

reductions under a lambda prevent us from having an “on-the-nose” relation, but reduction can

keep up enough with parallel reduction to maintain congruence.

Lemma C.8 (Congruence implies parallel reduction). If e1
⇝⇝ e2 then e1 ⇒ e2.

Proof. By induction on the derivation of e1
⇝⇝ e2.

var x ⇝⇝ x . By var.

const c ⇝⇝ c . By const.

lam λx :τ . e ⇝⇝ λx :τ ′. e ′, with τ ⇒ τ ′ and e ⇒ e ′. By lam.

app e1 e2
⇝⇝ e ′

1
e ′

2
, with e1 ⇒ e ′

1
and e2 ⇒ e ′

2
. By app.

beq bEqb el er e ⇝⇝ bEqb e
′
l e

′
r e , with el ⇒ e ′l and er ⇒ e ′r and e ⇒ e ′. By beq.

xeq By xeq. xEqx :τx→τ el er e ⇝⇝ xEqx :τx→τ e ′l e
′
r e , with τx ⇒ τ ′x and τ ⇒ τ ′ and el ⇒ e ′l and

er ⇒ e ′r and e ⇒ e ′. By xeq. □

We need to strengthen substitutivity (Lemma C.2) to show that it preserves congruence.

Corollary C.9 (Congruence is substitutive). If e1
⇝⇝ e ′

1
and e2

⇝⇝ e ′
2
, then e1[e2/x] ⇝⇝

e2[e
′
2
/x].

Proof. By cases on e1.

• e1 = y. It must be that e2 = y as well, since only var could have applied. If y , x , then
the substitution has no effect and we have y ⇝⇝ y by assumption (or var). If x = y, then
e1[e2/x] = e2 and we have e2

⇝⇝ e ′
2
by assumption.

• e1 = c . It must be that e2 = c as well. The substitution has no effect; immediate by var.

• e1 = λy:τ . e . It must be that e2 = λy:τ ′. e ′ such that τ ⇒ τ ′ and e ⇒ e ′. Ify , x , then we must

show λy:τ [e2/x]. e[e2/x] ⇝⇝ λy:τ ′[e ′
2
/x]. e ′[e ′

2
/x], which we have immediately by lam and

Lemma C.2 on our two subparts. If y = x , then we must show λy:τ [e2/x]. e ⇝⇝ λy:τ ′[e ′
2
/x]. e ′,

which we have immediately by lam, Lemma C.2 on our τ ⇒ τ ′, and the fact that e ⇒ e ′.
• e1 = e11 e12. It must be that e2 = e21 e22, such that e11 ⇒ e21 and e12 ⇒ e22. By app and

Lemma C.2 on the subparts.

• e1 = bEqb el er e . It must be the case that e2 = bEqb e
′
l e

′
r e

′
where el ⇒ e ′l and er ⇒ e ′r . By

beq and Lemma C.2 on the subparts.

• e1 = xEqx :τx→τ el er e . It must be the case that e2 = xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
where el ⇒ e ′l (and

similarly for τx , τ , er , and e). By xeq and Lemma C.2 on the subparts. □

7
Congruent terms are related to Takahashi’s M̃ operator: in that they characterize parallel reductions that preserve structure.

They are not the same, though: Takahashi’s M̃ will do βη-reductions on outermost redexes.

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

54 Niki Vazou and Michael Greenberg

Lemma C.10 (Parallel reduction of values implies congruence). If v1 ⇒ v2 then v1
⇝⇝ v2.

Proof. By induction on the derivation of v1 ⇒ v2.

var Contradictory: variables aren’t values.

const Immediate, by const.

lam Immediate, by lam.

app Contradictory: applications aren’t values.

beq Immediate, by beq.

xeq Immediate, by xeq.

β Contradictory: applications aren’t values.

eq1 Contradictory: applications aren’t values.

eq2 Contradictory: applications aren’t values. □

Lemma C.11 (Parallel reduction implies reduction to congruent forms). If e1 ⇒ e2, then

there exists e ′
1
e1 ↪→

∗ e ′
1
such that e ′

1

⇝⇝ e2.

Proof. By induction on e1 ⇒ e2.

Structural rules.

var x ⇒ x . We have e1 = e2 = x by var.

const c ⇒ c . We have e1 = e2 = c by const.

lam λx :τ . e ⇒ λx :τ ′. e ′, where τ ⇒ τ ′ and e ⇒ e ′. Immediate, by lam.

app e11 e12 ⇒ e21 e22, where e11 ⇒ e21 and e12 ⇒ e22. Immediate, by app.

beq bEqb el er e ⇒ bEqb e
′
l e

′
r e

′
where el ⇒ e ′l and er ⇒ e ′r and e ⇒ e ′. Immediate, by beq.

xeq xEqx :τx→τ el er e ⇒ xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
where τx ⇒ τ ′x and τ ⇒ τ ′ and el ⇒ e ′l and er ⇒ e ′r

and e ⇒ e ′. Immediate, by xeq.

Reduction rules. These are the more interesting cases, where the parallel reduction does a reduc-

tion step—ordinary reduction has to do more work to catch up.

β (λx :τ . e) v ⇒ e ′[v ′/x], where e ⇒ e ′′ and v ⇒ v ′′
.

We have (λx :τ . e) v ↪→ e[v/x] by β . By the IH on e ⇒ e ′′, there exists e ′ such that e ↪→∗ e ′

such that e ′ ⇝⇝ e ′′. We ignore the IH onv ⇒ v ′′
, noticing instead that parallel reducing values

are congruent (Lemma C.10) and so v ⇝⇝ v ′′
. Since reduction is substitutive (Corollary C.7),

we can find that e[v/x] ↪→∗ e ′[v/x]. Since congruence is substitutive (Lemma C.9), we have

e ′[v/x]⇝⇝ e ′′[v ′′/x], as desired.
eq1 (==b) c1 ⇒ (==(c1,b)). We have (==b) c1 ↪→ (==(c1,b)) in a single step; we find congruence

by const.

eq2 (==(c1,b)) c2 ⇒ c1 = c2. We have (==(c1,b)) c2 ↪→ c1 = c2 in a single step; we find congruence

by const. □

Lemma C.12 (Congruence to a value implies reduction to a value). If e ⇝⇝ v ′
then e ↪→∗ v

such that v ⇝⇝ v ′
.

Proof. By induction on v ′
.

• v ′ � c . It must be the case that e = c . Let v = c . By const.

• v ′ � λx :τ ′. e ′′. It must be the case that e = λx :τ . e ′ such that τ ⇒ τ ′ and e ⇒ e ′′. By lam.

• v � bEqb e
′
l e

′
r v

′
p . It must be the case that e = bEqb el er ep where el ⇒ e ′l and er ⇒ e ′r and

ep ⇒ v ′
p . Since parallel reduction implies reduction to congruent forms (Lemma C.11), we

have ep ↪→
∗ e ′p and e ′p ⇝⇝ v ′

p . By the IH on v ′
p , we know that e ′p ↪→

∗ vp such that vp ⇝⇝ v ′
p .

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

Functional Extensionality for Refinement Types 55

By repeated use of ctx, we find bEqb el er ep ↪→
∗ bEqb el er vp . Since its proof part is a value,

this term is a value. We find bEqb el er vp ⇝⇝ bEqb e
′
l e

′
r v

′
p by ebeq.

• v � xEqx :τ ′x→τ e ′l e
′
r v

′
p . It must be the case that e = xEqx :τx→τ el er ep where τx ⇒ τ ′x

and τ ⇒ τ ′ and el ⇒ e ′l and er ⇒ e ′r and ep ⇒ v ′
p . Since parallel reduction implies

reduction to congruent forms (Lemma C.11), we have ep ↪→
∗ e ′p and e ′p ⇝⇝ v ′

p . By the IH

on v ′
p , we know that e ′p ↪→

∗ vp such that vp ⇝⇝ v ′
p . By repeated application of ctx, we find

xEqx :τx→τ el er ep ↪→
∗ xEqx :τx→τ el er vp . Since its proof part is a value, this term is a value.

We find xEqτx :τ→ el er vp ⇝⇝ xEqx :τ ′x→τ ′ e
′
l e

′
r v

′
p by exeq. □

Corollary C.13 (Parallel reduction to a value implies reduction to a related value). If

e ⇒ v ′
then there exists v such that e ↪→∗ v and v ⇝⇝ v ′

.

Proof. Since parallel reduction implies reduction to congruent forms (Lemma C.11), we have

e ↪→∗ e ′ such that e ′ ⇝⇝ v ′
. But congruence to a value implies reduction to a value (Lemma C.12),

so e ′ ↪→∗ v such that v ⇝⇝ v ′
. By transitivity of reduction, e ↪→∗ v . □

Lemma C.14 (Congruence is a backward simulation). If e1
⇝⇝ e2 and e2 ↪→ e ′

2
then there exists

e ′
1
where e1 ↪→

∗ e ′
1
such that e ′

1

⇝⇝ e ′
2
.

Proof. By induction on the derivation of e2 ↪→ e ′
2
.

ctx E[e] ↪→ E[e ′], where e ↪→ e ′.
– E � •. By the outer IH.

– E � E1 e2. It must be that e1 = e11 e12, where e11 ⇒ E1[e] and e12 ⇒ e2. By the IH on E1,

finding evaluation with ctx and congruence with app.

– E � v ′
1
E2. It must be that e1 = e11 e12, where e11 ⇒ v ′

1
and e12 ⇒ E2[e2]. We find that

e11 ↪→
∗ v1 such that v1

⇝⇝ v ′
1
by Corollary C.13. By the IH on E2 and evaluation with ctx

and congruence with app.

– E � bEqb e
′
l e

′
r E

′
. It must be the case that e1 = bEqb el er ep where el ⇒ e ′l and er ⇒ e ′r .

By the IH on E ′
; we find the evaluation with ctx and congruence with beq.

– E � xEqx :τ ′x→τ ′ e
′
l e

′
r E

′
. It must be the case that e1 = xEqx :τx→τ el er ep such that τx ⇒ τ ′x

and τ ⇒ τ ′ and el ⇒ e ′l and er ⇒ e ′r . By the IH on E ′
; we find the evaluation with ctx and

congruence with xeq.

β (λx :τ ′. e ′) v ′ ↪→ e ′[v ′/x]. Congruence implies that e1 = e11 e12 such that e11 ⇒ λx :τ ′. e ′ and
e12 ⇒ v ′

. Parallel reduction to a value implies reduction to a congruent value (Corollary C.13),

e11 ↪→
∗ v11 such thatv

′
11

⇝⇝ λx :τ ′. e ′, i.e.,v11 = λx :τ . e such that τ ⇒ τ ′ and e ⇒ e ′. Similarly,

e12 ↪→
∗ v such that v ⇝⇝ v ′

.

By β , we find (λx :τ . e) v ↪→∗ e ′[v/x]; by transitivity of reduction, we have e1 = e11 e12 ↪→
∗

e ′[v/x]. Since congruence is substitutive (Corollary C.9), we have e[v/x]⇝⇝ e ′[v ′/x].
eq1 (==b) c1 ↪→ (==(c1,b)). Congruence implies that e1 = e11 e12 such that e11 ⇒ (==b) and

e12 ⇒ c1. Parallel reduction to a value implies reduction to a related value (Corollary C.13),

e11 ↪→
∗ v11 such that v11

⇝⇝ (==b) (and similarly for e12 and c1). But the each constant is

congruent only to itself, so v11 = (==b) and v12 = c1. We have (==b) c1 ↪→ (==(c1,b)) by

assumption. So e1 = e11 e12 ↪→
∗ (==(c1,b)) by transitivity, and we have congruence by const.

eq2 (==(c1,b)) c2 ↪→ c1 = c2. Congruence implies that e1 = e11 e12 such that e11 ⇒ (==(c1,b)) c2 and

e12 ⇒ c2. Parallel reduction to a value implies reduction to a related value (Corollary C.13),

e11 ↪→
∗ v11 such that v11 ⇒ (==(c1,b)) c2 (and similarly for e12 and c2). But the each constant

is congruent only to itself, sov11 = (==(c1,b)) c2 andv12 = c2. We have (==(c1,b)) c2 ↪→ c1 = c2

already, by assumption. So e1 = e11 e12 ↪→
∗ c1 = c2 by transitivity, and we have congruence

by const. □

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

56 Niki Vazou and Michael Greenberg

Corollary C.15 (Parallel reduction is a backward simulation). If e1 ⇒ e2 and e2 ↪→ e ′
2
,

then there exists e ′
1
such that e1 ↪→

∗ e ′
1
and e ′

1
⇒ e ′

2
.

Proof. Parallel reduction implies reduction to congruent forms, so e1 ↪→
∗ e ′

1
such that e ′

1

⇝⇝ e2.

But congruence is a backward simulation (Lemma C.14), so e ′
1
↪→∗ e ′′

1
such that e ′′

1

⇝⇝ e ′
2
. By

transitivity of evaluation, e1 ↪→
∗ e ′′

1
. Finally, congruence implies parallel reduction (Lemma C.8),

so e ′′
1
⇒ e ′

2
, as desired. □

C.4 Cotermination
Theorem C.16 (Cotermination at constants). If e1 ⇒ e2 then e1 ↪→

∗ c iff e2 ↪→
∗ c .

Proof. By induction on the evaluation steps taken, using direct reduction in the base case

(Corollary C.13) and using parallel reduction as a forward and backward simulation (Lemmas C.5

and Corollary C.15) in the inductive case. □

Corollary C.17 (Cotermination at constants (multiple parallel steps)). If e1 ⇒∗ e2 then

e1 ↪→
∗ c iff e2 ↪→

∗ c .

Proof. By induction on the parallel reduction derivation. The base case is immediate (e1 = e2);

the inductive case follows from cotermination at constants (Theorem C.16) and the IH. □

	Abstract
	1 Introduction
	2 The Problem: Naive Function Extensionality is Insoluble
	2.1 Syntax of Equality between Functions in the Refinements.
	2.2 Expressing of Naïve Function Extensionality
	2.3 Refinement Type Checking of Naïve Function Extensionality is Inadequate

	3 The solution: Explicit Encoding of Typed Equality
	3.1 Syntax and Semantics of RE
	3.2 Static Semantics of RE
	3.3 Metaproperties: PEq is an Equivalence Relation

	4 Implementation: a GADT for Typed Propositional Equality
	4.1 The PBEq GADT, its PEq Refinement, and the Measure
	4.2 Equivalence Properties and Classy Induction
	4.3 Congruence Closure
	4.4 Adequacy with Respect to SMT

	5 Examples
	5.1 Reverse: from First-Order to Higher-Order Equality
	5.2 Succ: Refined Domains and Dependent Ranges
	5.3 Map: Putting Equality in Context
	5.4 Fold: Equality of Multi-Argument Functions
	5.5 Spec: Function Equality for Program Efficiency

	6 Case Studies
	6.1 Monoid Laws for Endofunctions
	6.2 Monad Laws for Reader Monads

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Complete Type Checking of Extensionality Example
	B Proofs and Definitions for Metatheory
	B.1 Base Type Checking
	B.2 Constant Property
	B.3 Type Soundness
	B.4 The Binary Logical Relation
	B.5 The Logical Relation and the EqRT Type are Equivalence Relations

	C Parallel reduction and cotermination
	C.1 Basic Properties
	C.2 Forward Simulation
	C.3 Backward Simulation
	C.4 Cotermination

