
Files-as-Filesystems for POSIX Shell Data Processing
Michael Greenberg

michael.greenberg@stevens.edu
Stevens Institute of Technology
Hoboken, New Jersey, USA

Abstract
The POSIX shell is ‘stringy’, and its ecosystem primarily sup-
ports line-oriented formats. While such formats are popular
and common, contemporary programming often involves
semi-structured data, like JSON or YAML. Dealing with such
formats, the shell’s stringiness leaves users out in the cold—
the POSIX ecosystem struggles with semi-structured data.
New command-line tools work well with ‘modern’ data for-
mats, but each tool is its own complex language to learn.

The tree-like filesystem is the shell’s only real data struc-
ture. By mapping ‘modern’ formats onto file hierarchies, we
can work effectively in the existing ecosystem.

We introduce ffs, the file filesystem, a new tool for map-
ping semi-structured data formats to filesystems in userspace.
Like /proc and /sys, our filesystem-based approach helps
the shell (and other tools) manipulate structured data.
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1 Introduction
The POSIX shell is a critical and widespread tool for con-
figuration, deployment, management, and forensics. As re-
searchers think more about how best to support and improve
the command-line experience in general and the POSIX shell
in particular [13, 14, 24, 27], it is critical to also consider the
command-line ecosystem.
While the POSIX shell’s semantics are powerful [9, 12],

shell scripts tend to spend their time running other programs.
The shell is a coordinator, sending data to and from programs
primarily as strings: the program arguments in execve are
strings; command substitutions work with strings; pipes
and redirections are strings or binary data. The shell’s se-
mantics itself is ‘stringy’, i.e., it deals only with flat strings.
Word expansion rewrites strings before actually evaluating
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commands [10]. (There are non-POSIX shells with other
approaches, of course—see Section 4.)
Historically, the shell’s stringiness lived in an ecosystem

built for such stringy data. Tools like grep, cut, head, and
tail are line-oriented. The awk programming language [1, 2]
is the apotheosis of line-oriented processing.

The shell’s line-oriented approach falls over onmore struc-
tured data. Popular formats like JSON, YAML, and XML are
recursively structured, without reliably meaningful white-
space. Fortunately, tools have emerged to help command-line
users process these formats, like jq, a command-line JSON
processor in the spirit of awk [6], and gron, a query tool for
JSON in the spirit of grep [16]. Unfortunately, each such
tool is its own awk-level tool to learn.

We are left in an awkward situation. The shell remains an
excellent tool for one-off work, and is often the right tool
for more substantial tasks. But as soon as a ‘modern’ format
is involved, things get much more difficult. While it’s very
easy to process JSON in JavaScript or Python or R, it is hard
to ‘live’ in these tools as one does the shell. Everything is
unpleasantly polyglot: one must bounce around between
tools for simple, one-time tasks.

The shell’s difficulty working with semi-structured data is
both a language issue and an ecosystem issue. The shell ex-
cels in working with strings, but it really only has one data
structure: the file system (Section 2). To work effectively
in the shell with data of any kind, the data must either be
mapped to strings or to the filesystem itself. We introduce
ffs, the file filesystem, a tool for mapping semi-structured
data into file hierarchies using filesystems in userspace (Sec-
tion 3). The idea of mapping highly structured data to file
hierarchies of course predates ffs (Section 4). The filesys-
tem is the lingua franca of the POSIX world. Tools that map
worthwhile formats and system structures into filesystems
are enabling technology in the command-line ecosystem and
beyond (Section 5).

2 Data structures in the POSIX shell
The POSIX shell has only two data structures: strings in the
environment and the tree-like filesystem. While alternative
shells offer much more interesting structures (Section 4),
portable shell scripts can’t rely on them. The filesystem is
well structured in a way that the shell’s environment is not.
By translating structured data to the filesystem, we make it
easier for the shell to process than if it were in plain files.
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$ echo '{}' >demo.json # (A)
$ ffs -i demo.json & # (B)
[1] 17309
$ cd demo
demo $ echo 47 >favorite_number # (C)
demo $ mkdir likes
demo $ echo true >likes/dogs
demo $ echo false >likes/cats
demo $ touch mistakes
demo $ echo Michael Greenberg >name
demo $ echo https://mgree.github.io >website
demo $ cd ..
$ umount demo
$
[1]+ Done ffs -i demo.json
$ cat demo.json # (D)
{"favorite_number":47,"likes":{"cats":false,
"dogs":true},"mistakes":null,"name":
"Michael Greenberg","website":
"https://mgree.github.io"}

Figure 1. Command-line use of ffs to create a JSON file,
by (A) creating and (B) mounting an empty JSON file and
then (C) editing it in-place (-i) to contain strings, numbers,
and nested objects. (Output is semantically wrapped but
otherwise unedited.) Unmounting (D) saves the file.

Programs in the POSIX shell use environment variables to
store local and system-wide state. Environment variables are,
at core, strings, though they are sometimes also interpreted
as numbers (e.g., arithmetic expansion). The stringiness of
POSIX environment variables limits what the shell can do.
Between newline trimming of command substitutions and
issues with null bytes, environment variables can’t be used to
process binary data. Shell operators like prefix/suffix patterns
allow some primitive string operations; tools like sed and
grep offer more power. The shell semantics makes it not
too difficult to use strings as lists: experts can set IFS to
control how field separation breaks up inputs to for loops
and other forms. None of these tools let the shell reliably
process recursively structured data.
The filesystem, however, is basically a tree. Hard links

make it DAG-like, and symbolic links make it a nearly arbi-
trary graph. The shell is quite adept at moving around the
filesystem: manual use is easy, with cd - for backtracking
and pushd/popd for more complex situations; programmati-
cally, for loops with recursion and the find tool both make
it easy to traverse large directory structures in the shell.

Our idea is to map structured data formats onto the filesys-
tem. Navigating and manipulating the filesystem is a breeze
in the shell ecosystem as it exists today. By utilizing existing
tools, users can do the usual shell things—spot checks and
quick fixes—on data in modern formats. Rather than learning

$ curl https://api.github.com/
repos/mgree/smoosh/commits >commits.json

$ cat commits.json
[ { "sha": ..., "commit": ..., ... }, ... ]
$ ffs commits.json --no-output &
[1] 2883
$ for msg in $(find . -name message); do

if grep test $msg >/dev/null; then
echo $(cut -c 1-7 $(dirname $msg)/../sha)

matches: $(cat $msg);
fi;

done
a930035 matches: two more tests from old ...
cd923b5 matches: set path for integration tests
75ff2b4 matches: drop fds test---it's gh
da8bd4d matches: log ulimit for macOS test ...
0321690 matches: switch to gh actions, ...
451824a matches: more tests
2ee1784 matches: Exit status carryover (#42) ...
639d70d matches: test fds output
dd897d1 matches: abort test early if fd ...
ce28260 matches: test
8b9647b matches: close fds before testing, ...
4b55ccd matches: plain fds test

Figure 2. Exploring a large JSON file with ffs (with light
elisions for space constraints).

specialized tools (like jq or gron), users can go on using their
preferred tools, whether that means sed or vim or emacs.

3 ffs: the file filesystem
The ffs tool [11] uses filesystems in userspace (FUSE) to
treat semi-structured data as inspectable and editable file
hierarchies. Users mount a file as a filesystem by running
ffs in the background; the filesystem lets them manipulate
(Figure 1) and explore (Figure 2) the mounted fileystem. Al-
tering the mounted filesystem updates the data in the file.
As of version 0.1.1., ffs supports JSON, YAML, and TOML
formats. ffs is 3k SLOC of Rust, with 2.5k SLOC of (fairly
redundant) shell scripts as tests and benchmarks. Adding
formats that match ffs’s data model (Section 3.1) is easy.
The save/load logic is independent of individual formats
(Section 3.2). While ffs is a usable prototype, issues and
questions remain (Section 3.3).

3.1 Data model
ffs’s job is to take semi-structured data and map it to a
filesystem hierarchy of inodes. FUSE filesystems support all
seven POSIX XSI file types, but ffs only makes use of regular
files and directories. For a given format, the ffs data model
comes in three parts (Figure 3): first, the format is character-
ized as some set of values; next, types characterize the shape
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Formats
Format values v ∈ V

toNode : V → N

fromUtf : T × Σ∗
UTF-8 → V

fromRaw : BV∗
8 → V

fromMap : (Σ+UTF-8 ⇀ V) → V

fromVec : V∗ → V

Types
Directories dir ::= named | list
File types fty ∈ T ::= auto | null | boolean |

| integer | float | datetime
| string | bytes

Nodes
Nodes node ∈ N ::= utf(fty, s)

| raw(b)
| map(s+i 7→ vi )
| vec(vi )

UTF-8 s ∈ Σ∗
UTF-8

—"— nonempty s+ ∈ Σ+UTF-8
Bytes b ∈ BV∗

8

Figure 3. The ffs data model

of files and directories and determine how data is serialized
back from the filesystem; finally, nodes are an internal data
model that translate directly to inodes (Section 3.2).
The ffs type system characterizes each directory dir as

either a named directory (named) or a list directory (list).
In JSON terms, named corresponds to objects and list cor-
responds to arrays. In actual filesystems, every file has a
name—when we work with list directories, we track names
in the filesystem but load and serialize based on the filename
sorting order in the current locale. New directories default
to named. The type system characterizes each file as one
of eight types. Half correspond to familiar types (boolean,
integer, float, string). We include the datetime type to sup-
port formats with a notion of date, like TOML. The null type
supports formats with a notion of a null value (JSON, YAML).
The bytes datatype is for binary data—which none of JSON,
YAML, or TOML actually support. Files of type bytes will
be written back in base64 encoding.1 Finally, auto means
“please guess the type”. New files are given the auto type.

The core data model is made up of nodes. A node is one of
four things: a typed UTF-8 string (utf), raw bytes (raw),
a sequence of abstract values (vec), or a map from non-
empty UTF-8 strings to abstract values (map). The utf and
raw nodes correspond to regular files; utf nodes can have
1ffs doesn’t try to detect base64 data in the input. Every alphanumeric
string is (more or less) valid base64. Guessing wrong would be common and
confusing! There are existing command-line tools for converting base64 to
and from binary data, so it seems prudent to leave conversion to the user.

any type (including bytes), while raw nodes always have
type bytes. The map and vec nodes correspond to named
and list directories, respectively. These directory nodes hold
abstract format values, not further nodes. By not converting
values to nodes up front, we can write a generic save/load
implementation (Section 3.2) and leave room for alternative
regimes, like lazy loading (Section 5).
To actually map data into the data model, a format must

define three things: a notion of valuev , a value-to-node func-
tion toNode that translates a value v into a node, and a suite
of four node-to-v functions (fromUtf, fromRaw, fromMap,
fromVec). All ffs needs to support a format are these parts
(and routines for parsing and serializing format strings to
and from abstract values).
For example, the following definitions map JSON into

ffs’s data model. Define JSON values j as follows, where n
is a 64-bit floating point number and s is a UTF-8 string:

j ::= null | true | false | n | "s" | {s+i : ji} | [ji]

We map JSON values j into nodes in a straightforward way,
where ϵ is the empty string and format renders numbers:

toNode(null) = utf(null, ϵ)
toNode(true) = utf(boolean, true)

toNode(false) = utf(boolean, false)

toNode(n) =

{
utf(integer, format(n)) if n = ⌊n⌋

utf(float, format(n)) otherwise
toNode("s") = utf(string, s)

toNode({s+i : ji}) = map(s+i 7→ ji )
toNode([ji]) = vec(ji )

Translating nodes back to values is mostly boring: fromMap
and fromVec just create objects and arrays respectively, and
fromRaw base64 encodes its input and returns a JSON string.
But fromUtf is more interesting: it uses the type information
to try to generate appropriate JSON values, with auto mean-
ing “please guess”. Other types are given their best effort,
defaulting to strings. We show the auto and null cases:

fromUtf(auto, s) =



null if s = ϵ

true if s = true
false if s = false
n if strtod(s) = n
s otherwise

fromUtf(null, s) =

{
null if s = ϵ

s otherwise
fromUtf(. . . , s) = . . .

We settle for best effort over warnings to avoid being noisy;
it would be easy to make this configurable.

3.2 Saving and loading inodes
Given a format definition, ffs can parse a value and con-
vert it to a list of inodes, numbered data structures tracking
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file/directory contents and types, along with standard filesys-
tem metadata. These inodes service the various FUSE system
calls, which refer to files and directories by inode number,
with inode 1 being the root of ffs’s filesystem (and its own
parent). When the filesystem is unmounted, ffs walks the
inode list to generate and emit a new value. The saving and
loading is generic, thanks to the abstract node architecture.

Loading. ffs generates inodes by depth-first search on
a format value v , using toNode to convert values to nodes
as the search proceeds. Invalid filenames must be munged
(Section 3.3, “Name munging”). Munged names are stored
in metadata, and fieldnames are restored unmunged if those
files weren’t destructively renamed. In list directories, we
simply number the files, starting at 0. In order to ensure
that directory listings are sorted properly, filenames will be
0-padded by default, i.e., if there are 120 items, the first file
will be 000, the next will be 001, and so on through 119.

Saving. When the filesystem is unmounted, ffs’s default
behavior is to translate the inodes back into the initial for-
mat and emit it on STDOUT. Flags let you alter that behavior,
e.g., the -i in-place flag (Figure 1) or the --no-output si-
lencing flag (Figure 2). We traverse the inodes depth-first,
using fromVec and fromMap to convert directories. When
adding new files to list directories, any filename is allowed;
we serialize back in sorted order for the current locale. We
restore the original, unmunged name where possible. Some
files are ignored by default (e.g., ._ files holding extended
attributes on macOS). When converting files, if the contents
of the file are valid UTF-8 and the file’s type isn’t bytes, we
use fromUtf; otherwise we use fromRaw.

Operations. The implementations of the actual FUSE op-
erations are not particularly interesting: we look things up
in the inode list and perform the operations requested. There
are 41 such operations in the fuser Rust bindings [3], which
only offers the (more efficient) low-level FUSE bindings.
We leave 18 operations with the default implementation
(e.g., create forces the OS to use mknod and open) or unsup-
ported (bmap, copy_file_range, ioctl, links, locks, sync-
ing, readdirplus, and some macOS calls all return ENOSYS).

3.3 Challenges
Performance. ffs works well for quick tasks, with zippy

interactive performance on the small files one typically finds
in formats like JSON, YAML, and TOML (~10ms load times
on files 100KiB and under; Figure 4). All tests were run on a
MacBook Pro running macOS 10.13 with a 2.5 GHz Intel Core
i7 (4 cores) and 16GB RAM. The computer was unloaded and
the network was off. Each benchmark is run 10 times, and all
runs are shown. As input files grow above 0.5MiB, the startup
and shutdown times become noticeable. Startup is dominated
by reading and parsing values while shutdown is dominated
by unparsing values and writing; in both cases, saving and
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(a) 53 real-world JSON files of varying sizes and 4 tiny synthetic
JSON files (included to ensure that various renaming features are
exercised). The y-axis is log scaled; the x-axis is linear.
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(b) Synthetic JSON files exercise deep and wide nesting. The linear
relationship is presented log-scaled in both axes for readability.
There are no values for depths greater than 64; both the Python
and Rust JSON parsers hit recursion limits.

Figure 4. Initial performance evaluation of ffs startup and
shutdown. ‘Reading’ is reading and parsing JSON from stor-
age; ‘loading’ is generating inodes; ‘saving’ is generating a
JSON value from inodes; ‘writing’ is unparsing and writing
JSON back to storage.
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loading the inode structure is comparatively cheap (Figure 4
(a) and (b)). There are several bottlenecks: files are parsed
wholesale into format values v ; inodes are generated eagerly
before mounting happens.
In general, it is impossible to avoid parsing overhead

entirely—the recursive nesting in these formats means inter-
mediate structures must be at least scanned, if not parsed
all the way. Some of the format-parsing libraries support
streaming or lazy conversion to data structures, which would
reduce the parsing bottleneck. In any case, the Rust libraries
for these formats are generally fast, parsing hundreds of
megabytes per second. It would be relatively easy to reduce
the inode generation bottleneck by introducing a lazy in-
ode that held a format value v , to be partially traversed on
demand. A multithreaded implementation could continue
loading in the background, between system calls. Loading
might also benefit from learning parsers, like Mison [19].
When saving and emitting the final output, it might be

possible to reuse any unedited format values, trading time for
memory. In some circumstances, it might even be possible
to leave most of the file itself intact—though detecting that
situation might take more effort than is saved.

Name munging. Some valid field names are invalid file-
names, and vice versa. Any UTF-8 string is a valid JSON field;
TOML ‘bare’ keys are quite limited, but quoted keys can be
any string, even the empty one; Yaml keys can be arbitrary
structures. On the other hand, filenames must be nonempty,
the filenames . and .. are both reserved, and the null byte
is forbidden. Characters like - and * and ? are legal, but they
are inconvenient to work with, as are whitespace characters.

ffs’s current approach is ad hoc. A --munge flag switches
between renaming and filtering fields. Renaming can lead to
collisions, which not only demand more renaming in turn,
but also make the internal format value’s ordering observ-
able. If no edits are made, munged names will be correctly
unmunged when saving the data back. Not so for filtering:
filtering is a nice way to say “data loss”. On the one hand,
offering a panoply of configuration flags to control these
behaviors is an unappealing solution; on the other hand,
warnings, errors, or interactivity all reduce ffs’s program-
matic usability in scripts and other automation.

Metadata. We use the extended attribute user.type to
track the dir and node types; these can be set to, e.g., convert
a list directory to a named one, or force a file to be interpreted
as bytes. Such an approach works, but is a poor affordance:
one must read the documentation and learn to use a tool
for managing extended attributes. There are alternatives,
all of which introduce more name clashes: we could use
filename extensions to indicate types; or we could use some
kind of file-based metadata scheme, where foo’s metadata
is in .foo.type or .types/foo (allocating and managing
inodes for many such files) or in a per-directory file .types
(making individual type updates more cumbersome).

Constraints. ffs’s data model is presented here as un-
constrained, but in fact formats and filesystems come with
constraints. FUSE filesystems must have a directory at the
root, but JSON and YAML have no such constraints (TOML
requires the root to be named). On the flipside, it’s possible
to use extended attributes to force the root to be a list direc-
tory, which violates TOML’s constraint. In ffs, all of these
situations lead to runtime errors.

YAML has an incredibly rich data model, making the full
YAML specification notoriously difficult to get right. Two
features complicate ffs’s work: arbitrary keys and aliases. In
YAML, a “mapping”—a named directory and all its contents—
can be a key to another mapping. That would correspond to
the baffling notion of treating a directory and its contents
as a filename. When we encounter such structured keys, we
just use their hash. YAML’s aliases allow named values to be
repeated. Our YAML parser handles these automatically, but
may not work in all cases—and there are no hooks to treat
such aliases as, say, symbolic links.
Finally, we have not yet implemented XML bindings for

ffs. XML’s data model is rich with attributes and PCDATA,
i.e., interleaved text and child tags. It’s not at all clear which
of the many possible mappings would be appropriate; fol-
lowing xmlfs [20] might be easiest approach.

4 Related work
Complex data as file hierarchies. Killian introduced

/proc, a pseudo-filesystem allowing file-based access to sys-
tem and process information, for Unix V8 [18]. Faulkner
and Gomes [7] ported the concept to UNIX System V. /proc
remains a popular interface on Linux.

Wimmer [28] proposes “files as directories”, of which ffs
is an instance; he gives an overview of previous approaches.
We refine his proposal, arguing that mapping structured data
to file hierarchies is particularly well suited to the POSIX
shell ecosystem. Tchernavskij [23] offers an ambitious vision
of file-to-filesystem mappings, and suggests investigating
the “cognitive and operational details”. ffs can be seen as
investigating the operational details for the particular task
of working with semi-structured data. Kell [17] agrees with
Wimmer’s approach, but recharacterizes “the desired affor-
dance” as “not directories per se, but the ability to swap
straightforwardly between a byte-stream and a directory
‘view’ of the data”. ffs’s in-place editing gives some of that
feel, but ffs does not support simultaneous editing of the
JSON file and its filesystem mapping. Kell’s concerns around
“bidirectionality” recur in our setting (Section 3.3).

Augeas [21] is a configuration tool that maps files in /etc
to a unified tree structure and edits the tree in a custom shell,
using lenses [5] to map edits back to system configurations.
ffs works with the user’s choice of shell and ecosystem.
Modulo constraints, ffs’s mapping is not just a lens, but in
fact a bijection.
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Filesystems inUserspace. Filesystems in userspace, a/k/a
FUSE, are not a new idea. The FUSE API is available on a
variety of Unix-like systems (Linux, FreeBSD, macOS); Win-
dows uses its own Projected File System API. 9p is a simpler
protocol than FUSE; it is network-based and implemented on
Linux via FUSE. FUSE filesystems range from toys (including
toy implementations of JSON filesystems) to commonly used
systems like fuse-zip to serious implementations of cloud
storage products; see Vangoor et al. [25] for an overview.
Unsurprisingly, FUSE is not as performant as in-kernel

filesystems, with nearly 6x (-83%) slower throughput than
conventional filesystems [25, 26]. XFUSE [15] is a userspace
filesystem framework that offers significant speedups over
FUSE. Since XFUSE is FUSE-compatible, we imagine that
dropping ffs into XFUSE would offer speedups. The works
just cited evaluate stackable filesystems: passthrough shims
that are backed by ext4. XFUSE simulates a variety of possible
underlying block devices, including RAMDisks—where the
overheads of FUSE cause it to perform much worse than
XFUSE, which also performs worse than ext4. Since ffs
works entirely in-memory after parsing its input, it probably
suffers similarly high overheads.
Various projects aim to speed up FUSE by crossing the

user/kernel boundary less often. Direct-FUSE [29] offers
1.1x speed ups by moving more of FUSE into userspace.
ExtFUSE [4] specializes the FUSE interface, running some
filesystem logic as eBPF inside the kernel. ExtFUSE speeds up
‘stackable’ or ‘passthrough’ filesystems, which just modify
some other filesystem’s behavior; it’s not clear how ffs
might benefit. Bento [22] offers 7x speed ups by moving
everything into kernelspace, relying on Rust for safety. ffs
is already written in Rust, and would be a good fit for Bento.

Alternative shells. We focus on supporting the POSIX
shell with ffs, but each system uses some particular shell.
bash is almost certainly the most popular such shell, and
is mandated as the language for shell scripts at Google [8].
It offers one-dimensional arrays, which simplify ad hoc list
handling—but arrays aren’t a good fit for recursive data. bash
also offers ‘loadable builtins’ for, e.g., CSV processing. zsh
is also popular, and it goes well beyond POSIX. It has both
arrays and dynamically loadable ‘modules’, which offer new
builtins for working with structured data (e.g., the termcap
database). Neither has tools for semi-structured data.
Both bash and zsh are POSIX-like, but new shells take

wildly different paths. fish feels POSIX-ish interactively, but
it offers amore conventionally structured scripting language—
that doesn’t support semi-structured data. PowerShell is an
object-oriented shell for Windows that exposes the underly-
ing OS objects. PowerShell can be run on any .NET platform,
but it’s most useful on top of the object model underlying
Windows. nushell uses a tabular data model; it works with
formats like JSON and TOML natively. Shell-like scripting

languages and libraries offer general purpose programming
tools; see Greenberg [10] for a review.

5 What’s next?
What is the best way to evaluate ffs? Prior work on FUSE
filesystems focus on block-device backed filesystems, rather
than in-memory systems, where we can expect the relative
overhead of context switches to be much higher. What is the
right baseline? Should ffs be compared to using an editor
for interactive work, or to scripts in JavaScript or Python or
a notebook? What tasks and benchmarks are appropriate?
Lazy loading promises reductions in startup time on large
files. What other optimizations are worthwhile?

It would be good to guarantee that each format’s mapping
to and from the ffs data model was correct, i.e., a bijection.
Supporting more formats would make ffsmore useful. XML
is a natural choice, as are binary formats like CBOR and
BSON. More broadly, what other file-to-filesystem mapping
tools would be useful? ELF and other executable formats?
Media and their metadata? What else?
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