
Unix Shell Programming: The Next 50 Years
Michael Greenberg

∗

Pomona College

Claremont, CA, USA

michael.greenberg@pomona.edu

Konstantinos Kallas
∗

University of Pennsylvania

Philadelphia, PA, USA

kallas@seas.upenn.edu

Nikos Vasilakis
∗

MIT

Cambridge, MA, USA

nikos@vasilak.is

ABSTRACT

The Unix shell is a powerful, ubiquitous, and reviled tool

for managing computer systems. The shell has been largely

ignored by academia and industry. While many replacement

shells have been proposed, the Unix shell persists. Two re-

cent threads of formal and practical research on the shell

enable new approaches. We can help manage the shell’s es-

sential shortcomings (dynamism, power, and abstruseness)

and address its inessential ones. Improving the shell holds

much promise for development, ops, and data processing.

CCS CONCEPTS

• Software and its engineering→ Scripting languages;

Compilers; Operating systems.

KEYWORDS

Shell, Unix, JIT, Analysis, Transformation, Optimization

ACM Reference Format:

Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021.

Unix Shell Programming: The Next 50 Years. InWorkshop on Hot
Topics in Operating Systems (HotOS ’21), May 31–June 2, 2021, Ann
Arbor, MI, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/

10.1145/3458336.3465294

1 INTRODUCTION

The Unix shell is an attractive choice for specifying succinct

but powerful scripts for system orchestration, data process-

ing, and other automation tasks. Moreover, it is the first tool

that one has access to in every Unix distribution. Its benefits

and its unavoidability make the shell extremely well exer-

cised, if not well loved, in the current status quo. While in

principle cloud computing deprecates many shell tasks as

∗
Alphabetical order.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.

https://doi.org/10.1145/3458336.3465294

automated systems take on various configuration and man-

agement jobs, in practice, shell scripts show up everywhere

in the cloud regime: Docker, Vagrant, Kubernetes, and other

cloud deployments are all managed by shell scripts.

There is no point denying it: the shell has many shortcom-

ings and is hated by many. Shell scripts are unmaintainable,

easy to get wrong, and inflexible with respect to performance;

once a script is written it is difficult to refactor it to avoid

redundant computation or properly utilize all the available

computational resources. To make matters worse, the shell

has been mostly left for dead by both academia and industry,

considering it an unsalvageable piece of junk that needs to

be replaced at the first opportunity.

1.1 Shouldn’t we just replace the shell?

What if we just gave up on the shell? After all, moving from

System V init scripts to systemd has arguably improved

the Linux boot sequence. Why install packages manually

when you can specify base images in Docker and Vagrant,

and Travis CI will let you specify addons to provision per-

platform. Moves to systemd, Docker, Vagrant, and other

‘modern’ services have indeed improved things a great deal,

but there have been serious regressions. And, at core, these

tools all use the shell extensively! Systemd uses its own vari-

able expansion regime, slightly different from the shell’s...

encouraging you to run sh -c if you have an actual pipeline

to run. Dockerfiles and CI config files are almost shell scripts,
but there’s no convenient way to just execute the RUN com-

mands or script lists they contain. And few are the Vagrant-

files that don’t call out to some provision.sh to set up de-

pendencies. Giving up on the shell means that each ‘modern’

system tool will have its own janky quasi-shell language:

a decidedly worse situation. Similarly, some simple shell

scripts could just as well be Python scripts, but complex

pipelines are much harder to port over. Using popen or even

support libraries like Plumbum lack the easy composition

enjoyed in the shell [23, 28].

1.2 Is it really that bad?

For a long time, the shell was neglected by both academia

and industry as irredeemably bad. In our diagnosis, the de-

sire to give up on the shell stems from three of its essential

104

https://doi.org/10.1145/3458336.3465294
https://doi.org/10.1145/3458336.3465294
https://doi.org/10.1145/3458336.3465294

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis

characteristics that make it hard to think clearly about the

shell and hard to reach its full potential:

(1) The shell contains a language that can be used to

compose arbitrary commands, written in arbitrary lan-

guages and feature arbitrary behaviors.

(2) The shell’s execution depends on a variety of dynamic

components, such as the state of the file system and

the values of environment variables.

(3) The shell’s semantics is black magic, specified in a 119

page impenetrable document that is the POSIX shell

specification (with an extra 160pp on utilities!).

These three characteristics stymie principled approaches to

the shell, as any principled solution needs to (i) apply to a

wide variety of arbitrary commands, (ii) account for its dy-

namic nature, and (iii) handle the intricacies of its semantics.

1.3 The shell is actually good

The shell is a useful abstraction deserving of our attention

despite its imperfections (Section 2). Two recent projects—

PaSh [49] and POSH [43]—gave us a glimpse of the possibili-

ties, taming the aforementioned shell characteristics, trans-

forming a restricted-but-widely-used fragment of the shell

to data flow graphs. These graphs can be heavily optimized

to produce fast, data-parallel interpretations of what were or-

dinary shell pipelines. We argue that by drawing from these

efforts and recent work on mechanized shell semantics [24],

we can rehabilitate the shell (Section 3).

The shell is a critical corner of computing; let it enjoy the

advantages of nearly fifty years of systems and languages

research that has neglected it. Better performance, safer ex-

pressivity, and gentler user experience await (Section 4).

2 THE GOOD, THE BAD, AND THE UGLY

The shell is a mixed bag: ubiquity, power, clumsiness, ob-

scurity. Here are some aspects of the shell that are (i) worth

keeping (the good), (ii) essential but challenging (the bad),
and (iii) inessential flaws that can be addressed (the ugly).

2.1 The Good

The Unix shell hits a sweet spot between succinctness, ex-

pressive power, and performance. McIlroy presents a striking

example [9], but the shell can go further: over 100 lines of

Java code that perform a temperature analysis task [52] can

be translated to a 48-character four-stage pipeline of compa-

rable performance.

cut -c 89-92 | grep -v 999 | sort -rn | head -n1

So what are the ingredients of the shell’s success?

G1: Universal composition. The shell is a natural com-

poser of programs. More than any other language, the shell

makes it easy to combine a variety of existing tools written

themselves in a broad array of languages. Composing exist-

ing tools increases productivity, reliability, and simplicity—

after all, “the most radical possible solution for constructing

software is not to construct it at all” [12]. Unix helps by

promoting a component philosophy [36] and by serving as

the de facto component library [34], with most programs and

libraries offering CLI frontends.

G2: Stream processing. The Unix shell embeds a small

domain-specific language (DSL) for expressing pipelined

stream computations—semantically close to Kahn process

networks [30] and co-routines [31]. Coupled with filesystem-

backed naming (of both code and data), language-agnostic

composition, and higher-order primitives like xargs, the ex-

pressiveness of this DSL turns out to be quite powerful. Due

to careful engineering of the pipe primitive and commands

such as sort and grep, these streaming pipelines are capa-

ble of gracefully scaling to handle large amounts of data

quite efficiently even if the underlying machine has limited

resources.

G3:Unix-native. The features and abstractions of the shell

are well suited to the Unix file system and file-based abstrac-

tions. Unix can be viewed as a naming service, mapping

strings to longer strings, be it data files or programs. Nam-

ing is both convenient and essential to (powerful classes of)

computation [46]. Processes, PATH entries, files, streams, and

environment variables are all names, and the shell is the tool

for manipulating and interacting with these names.

G4: Interactive. The shell is not just a programming lan-

guage, but the lived-in environment. By having the entire

environment be the program context, the shell lowers the

barrier between interactive and non-interactive use. Inter-

activity is further facilitated by commands that are short

and which often take single-letter flags with default options

informed by real practical use [9].

2.2 The Bad

Some of the shell’s essential characteristics make life difficult

and prevent us from improving the shell. It’s hard to imagine

‘addressing’ these characteristics without turning the shell

into something it isn’t; it’s hard to get the good of the shell

without these bad qualities [23].

B1: Too arbitrary. The shell’s virtue of limitless compo-

sition (G1) is also its vice: the shell can compose arbitrary

commands written in arbitrary languages. Any ‘simple’ shell

command may translate to an execve of some arbitrary exe-

cutable with arbitrary, unknown behaviors. Calls to execve

make unified analysis very challenging, as different source

languages won’t share semantics; binary analysis—the low-

est common denominator—cannot discover high-level invari-

ants. This acts as a very high barrier of entry for research

105

Unix Shell Programming: The Next 50 Years HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

and development of tools and analyses for the shell since

researchers have to either make a huge effort to hardcode

the semantics of each command for their tools to work, or

risk the tool not being used widely.

B2: Too dynamic. Shell scripts are very succinct partly

because of the existence of global state that can be modi-

fied and accessed at runtime. Unfortunately, this means that

the behavior of a shell program cannot be known statically:

a simple grep $PWD -in ~/.*shrc depends primarily on dy-

namically computed values, including the state of the file

system, the current directory, environment variables, and

unexpanded strings. This disallows any form of static anal-

ysis or transformation for improving the correctness and

performance of shell scripts; a static analysis would either

have to be unsound, assuming that the state ahead of time

will be the same as the state at runtime, or ineffective, con-

servatively assuming the worst for every part of the state

that can be modified at runtime.

B3: Too obscure. The semantics of the shell and common

commands are documented in 300pp of standardese [7]. To

be able to reason about a script’s behavior, one needs to

understand the exact behavior of its composition operators,

the role of the environment, and the intricate state of the

shell interpreter. Furthermore, there is no single shell envi-
ronment. Multiple shells (with subtle behavior differences)

coexist in the same machine: a pared down shell [4, 11] is

used for startup scripts, while bash [45] is a common interac-

tive choice. Every shell extends POSIX in its ownway [24, 27].

The lack of an easy-to-use correctness baseline and the in-

ability to formally reason about the shell’s semantics inhibits

research on the shell. On the other hand, developing new

shells with cleaner semantics is likely to fail without any

consideration for backward compatibility.

2.3 The Ugly

The bad aspects of the shell are part of its essence, making

them hard to address without significantly diverging from

the shell we know an love. In addition to them, the shell also

has several flaws that (i) prevent it from being used for a

wider variety of tasks, (ii) make the life of shell developers

very difficult (leading to frustrated revulsion [19]), but (iii)

aren’t essential to its existence.

U1: Error-proneness. While all dynamic programming

languages suffer from bugs that manifest as runtime errors,

the shell is known for its many potential sources of error—

with dire consequences! The shell’s syntax and its direct

access to the user’s entire system, both aimed at terse in-

teractive use, lead to a fast-paced high-stakes programming

experience where a single typo could erase entire hard drives.

Protective mechanisms such as assertions and error handling

that are commonly used in critical code written in other lan-

guages are not well supported in the shell.

U2: Performance doesn’t scale. While shell scripts have

acceptable performance in a single-core setting, they’re not

tuned for multicore machines and clusters of nodes. Un-

like other programming languages, the performance of shell

scripts is dominated by the performance of the commands

that they compose, and unfortunately, most shell commands

do not scale. This leads users to restricted parallelism orches-

tration tools [20, 29, 48, 54] or even worse, to replace parts

of their scripts with programs in parallel frameworks, an

error-prone process that requires significant effort.

U3: Redundant recomputation. Small changes to the in-

put of a script a complete re-execution, leading to many

hours of wasted redundant computation. This is common in

data processing (and preprocessing) workloads, as well as

in build, configuration, and setup scripts. Domain specific

solutions (such as build systems, e.g., make) address this issue
for their use cases, but do not generalize or compose.

U4: No support for contemporary deployments. The

shell’s core abstractions were designed to facilitate orchestra-

tion, management, and processing on a single machine. How-

ever, the overabundance of non-solutions—e.g., pssh, GNU
parallel, web interfaces—for these classes of computation

on today’s distributed environments indicates an impedance

mismatch between what the shell provides and the needs

of these environments. This mismatch is caused by shell

programs being pervasively side-effectful, and exacerbated

by classic single-system image issues, where configuration

scripts, program and library paths, and environment vari-

ables are configured ad hoc. The composition primitives do

not compose at scale.

3 ENABLERS

The shell has been around for half a century, so the address-

able issues (U1-4) outlined in the previous section have been

around, too.What’s changed today? Three key enablers—two

recent research threads and one proposed here—combine to

unlock the shell’s missing potential by alleviating the effects

of the necessary evils (B1-3). These enablers have both con-

ceptual merit, allowing others to build on their ideas, as well

as practical value, as they are concrete open-source systems

that can be used in other research.

3.1 Two Recent Enablers

Two recent enablers are (1) the formalization of the POSIX

shell, and (2) light-touch parallelization and distribution

transformation systems for the shell.

E1: Libdash & Smoosh Smoosh [24] is a recent effort to

formalize the semantics of the POSIX shell, addressing the

106

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis

obscurity and subtleties of the prose standard [7] (B3). It has

two parts: (1) libdash, a linkable parsing library that supports

both parsing POSIX shell scripts to ASTs and unparsing these

ASTs back to scripts, and (2) a POSIX formalization mech-

anized in Lem, an ML-like language that can be compiled

to Coq for mechanized reasoning and proofs or OCaml for

execution. Smoosh has found several bugs in popular shell

implementations, not to mention the POSIX specification

and test suite itself.

Smoosh is a key enabler because it allows others to (1)

study the POSIX shell and its nuanced behavior, (2) under-

stand the divergences introduced by different shells, and (3)

design and implement (formal) analyses and transformations

on top of its symbolic, executable semantics.

E2: PaSh & POSH PaSh [49] and POSH [43] both proposed

annotation languages as a high-level specification interface

for dealing with the challenges of unknown command behav-

ior (B1). Specifications are written once for each command

and correspond to a specific command version (similarly to

manpages). They can be aggregated in specification libraries

which can be shared between users, not unlike completion

libraries. PaSh and POSH use these specifications to trans-

form shell pipelines to dataflow graphs [26] with specific

properties, that they then optimize to either (1) achieve data

parallelism in a multicore setting, speeding up slow CPU-

intensive commands [49]; or (2) offload commands close to

their input data, reducing network overhead [43].

PaSh and POSH specifications characterize important prop-

erties about commands—e.g., their interaction with state and

their inputs and outputs—and can be used as abstract models

of the command behaviors and their interfaces, facilitating

the development of analyses and transformations. A benefi-

cial implication of the command specifications is that they

decouple research on the shell from research on developing

specifications for commands, allowing both to proceed inde-

pendenly and in parallel, providing an interface for progress

to be shared between them.

PaSh and POSH are key enablers because (1) they show

that the shell too can benefit from automated transformation

frameworks, (2) they offer a baseline for other tools to im-

prove performance performance, (3) they propose annotation

languages that enable reasoning about arbitrary commands,

and (4) they propose a dataflow model for a subset of the

shell—a foundation for further analyses and transformations.

3.2 A proposal...

PaSh and POSH showed that shell scripts can enjoy order-
of-magnitude performance improvements with adroit pre-

processing [43, 49]. But both systems face two serious im-

pediments: the shell’s dynamism and system resource con-

straints. Any attempt to reason statically about the shell will

face these challenges. We propose a dynamically triggered

optimization regime for the shell that we call Jash, short for

‘Just a shell’. Jash inspects each shell command as it comes

in to identify candidates for rewriting. Since Jash works dy-

namically, it can take into account current system conditions

to decide whether to even try to apply optimizations!

The dynamic nature of the shell As discussed earlier

(B2), the execution of shell scripts depends on several dy-

namic components such as the state of the file system, the

current working directory, and the values of environment

variables. Therefore, ahead-of-time solutions, such as the

ones proposed by PaSh and POSH, choose between being

conservative and ineffective or optimistic and unsound. Con-

sider the following script, which is based on the original

spell program by Johnson [8], lightly modified for modern

environments.

FILES="$@"
cat $FILES | tr A-Z a-z |

tr -cs A-Za-z '\n' | sort -u | comm -13 $DICT -

The above script checks the spelling of a set of input $FILES

based on a dictionary file that is referenced by the envi-

ronment variable $DICT. An ahead-of-time compiler has no

knowledge of the input files and thus cannot properly decide

if and how to parallelize or distribute the above pipeline—i.e.,
neither PaSh nor POSH optimize this script.

To support the shell’s dynamism (B2) Jash uses a just-in-

time (JIT)
1
compilation framework that invokes the compiler

as late as possible to provide it with necessary runtime in-

formation. The JIT tightly couples with the shell, switching

back and forth between interpretation and optimization; in-

terpretation is provided by the user’s original shell and deals

with dynamic features such as parameter expansion, and

optimization is provided by the core analysis and transfor-

mation infrastructure and deals with optimization (for us,

at first, parallelization à la PaSh). This line-oriented, shell-

native architecture allows Jash to call the compiler at the

right time—with as much runtime information available as

possible—resulting in a system that can perform sound opti-

mizations in both programmatic and interactive contexts.

By running just-in-time, the optimization subsystem has

access to crucial information regarding performance opti-

mizations, e.g., file sizes, mappings from filesystems to phys-

ical media, and system load. Jash can determine in the mo-

ment whether it is even worth trying to optimize on small

inputs. For the above example, the JIT compiler would first

determine the input files, expand $DICT, and then determine

how to parallelize the pipeline in lines 2-4. Expanding the

1
Our definition of JIT is different from its traditional usage where JIT implies

aggressive optimizations on hot parts of the code using profiling informa-

tion. In our context, JIT simply means that the compiler is invoked at the

right time with adequate information about the state of the shell and its

environment—think “dynamic analysis for runtime optimization”.

107

Unix Shell Programming: The Next 50 Years HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

Ex
ec

ut
io

n
tim

e
(s

)

0

50

100

150

200

Standard IO-opt

Bash PaSh Jash

Figure 1: Executing a script that sorts the words of a

3GB input file with bash, PaSh, and the Jash prototype.

Both instances are c5.2xlarge AWS EC2. The standard

instance has a gp2 disk (100 IOPS that bursts to 3K)

while the IO-opt has a gp3 disk (15K IOPS). PaSh per-

forms worse on ‘Standard’ because it doesn’t take sys-

tem resources into account.

parameters before running the pipeline must be done with

care: early expansions shouldn’t have side-effects; Smoosh’s

semantics is critical for this kind of reasoning. To sum up:

Jash will not only be sound with respect to shell semantics,

it will also be more effective.

Restrictive Resource Assumptions PaSh and POSH fo-

cus on achieving performance improvements given an abun-

dance of underlying computational resources. PaSh assumes

a machine with high storage throughput and lots of available

storage space for buffering. POSH assumes a cluster where

computational resources per node are unlimited and thus

co-locating the computation with the data never degrades

performance. These assumptions simplify optimizations, but

do not represent the entire population of shell users, which

ranges from owners of palm-sized computers to administra-

tors of supercomputers.

To relax these assumptions, we are developing a resource-

aware optimization procedure that ensures performance im-

provements on a multitude of underlying platforms. The

procedure is built on top of a cost-aware dataflow model,

allowing for an extensible graph rewriting system that ap-

plies transformations with certain performance objectives

within a specified cost budget. The JIT compiler keeps the

optimization procedure up-to-date on the currently available

resources of the underlying infrastructure as well as the size

and characteristics of the input. Figure 1 shows the execu-

tion time of a script with bash, PaSh, and the Jash prototype

on two EC2 instances with different IO capabilities—Jash

exhibits better performance in both setting due to resource

awareness.

The JIT compiler and resource-aware optimization yield a

shell that can be used by anyone on any infrastructure and
still lead to performance benefits (and no regressions!) for a

wider variety of scripts and input workloads.

3.3 ...and Enabler

Jash includes a few other standalone contributions such as

high-performance libdash-JIT interactions, but its primary

contribution is its architecture, which enables future work.

E3: Jash Jash promises to operate on any POSIX shell script

that exhibits the full range of dynamic behavior allowed by

the standard—including but not limited to variable expan-

sion, command substitution, process substitution. Jash’s JIT-

based approach helps us surmount an obstacle essential to

the shell—namely, the limitations of static insights in the

dynamic world of the shell (B2). Combined, E1–3 open excit-

ing new research directions for which dynamic interposition

is the key tool.

4 THE FUTURE OF THE SHELL

The aforementioned enablers open exciting new directions

in distributed computing, incremental computation, expres-

siveness support, and tooling for the shell.

Distribution Building a distributed Unix equivalent, in

which Unix abstractions transcend single-computer bound-

aries, has been a goal since the 1970s [38, 40, 41, 50, 51]. Most

attempts implemented full-fledged distributed operating sys-

tems, but enablers E1–3 hint at the option of a language-

systems hybrid: a thin but sophisticated rewriting-based

shim à la Jash would have simplified the design of these

systems, and would have armed them with the semantic

foundation necessary for tackling unavoidable distribution

trade-offs [5, 21, 35].

A few other connections can enable worthwhile research

directions. PaSh and POSH identify a fragment of the shell

with simpler semantics than the complete shell, i.e., dataflow
programs that take a set of inputs and produce a set of out-

put files. This fragment can be easily manipulated; combin-

ing programs in this fragment with the JIT compilation of

Jash and recent developments on the interactivity of remote

shells [53] could enable the development of a well-behaved

distributed and fault tolerant shell, where users can easily

configure and efficiently execute tasks on a cluster of nodes.

These insights could also be combined with recent work

on developing and compiling applications on top of emerg-

ing serverless platforms, e.g., gg [18] and Lambada [39], to

explore porting the shell to this setting. For a subset of com-

mands the shell can be thought of as a workflow description

language; composing commands to configure a system or

perform a complex task. Building on recent work [13] it

would be possible to develop a fault tolerant and efficient

shell implementation for workflows in cloud deployments.

Finally, a deep understanding of the shell language (E1) can

guide the design of distribution-friendly language subsets—

with promising candidates being a streaming DSL [47], a

108

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis

concurrency DSL [22], or a declarative configuration man-

agement DSL that could provide semantic foundations for

systems such as Ansible [1], Chef [2], and Puppet [3].

Incremental Computation The command specification

frameworks proposed by PaSh and POSH and the JIT opti-

mization subsystem in Jash (E2, E3), can also serve as the

foundation of an incremental computation framework to ad-

dressU3. Incremental computation is especially useful in the

context of the shell: developing a shell script is an iterative cy-

cle of coding, testing, inspecting, and tweaking. Furthermore,

shell scripts are often used for data downloading, extract-

ing, cleaning, and other processing tasks. Re-executing such

scripts on large datasets can be prohibitively expensive!

Incremental computation [44] has been widely studied for

a variety of domains, from restricted ones, such as stream pro-

cessing [37]; to general ones, such as threading support [10].

However, in almost all cases it requires extending the pro-

gramming model in order to expose necessary information,

e.g., input-output dependencies that can be exploited by the

IC compiler and runtime [14, 25]. Simply extending the shell

language would break legacy scripts and restrict the possible

adoption of such a framework.

PaSh and POSH’s command specifications are the missing

link, exposing the necessary information for an incremen-

tal computation framework. For example a command that

processes each of its input lines independently need not be

reapplied to the input lines that were unchanged. The JIT

framework can then be used to provides up-to-date informa-

tion on the latest state of script inputs. Combined, we have

the critical building blocks for a runtime that incrementally

reinterprets a script given changes of its input.

Heuristic support Perhaps the hardest part of supporting

shell programming is reasoning about the commands users

run. Both PaSh and POSH use command specifications to

specify parallelization-relevant aspects of commands’ behav-

ior. These specifications were hand-written after carefully

inspecting each command to determine its parallelizability

properties. Hand-writing specifications even for common

commands is quite a task, but users will need help not just

with standard utilities, but their own programs (B1). Formal

methods techniques such as fuzz testing, program analysis,

and active learning could (i) test that a command conforms

to its specification or even (ii) learn important aspects of a

command’s specification by inspecting its behavior. Testing

and inferring command specifications would enable large

libraries (formal, symbolic man pages) concerning a vari-

ety of properties (e.g., concurrency/parallelism, expected

command line argument syntax, filesystem access, expected

runtime/memory usage).

Extending specifications with more properties would al-

low for a variety of expressive analyses—extending the syn-

tactic checks of ShellCheck [33] and SecureCode [15], the

man-page-directed listings of ExplainShell [32], or the purely

textual model of NoFAQ [16]. Two promising directions: iden-

tifying errors and command misuse in a shell script, and a

shell tutor (B3, U1). Building on the JIT execution frame-

work and the command specification libraries, one could

develop a sound JIT analysis that detects command misuse

at runtime (but still before it occurs). Such an analysis could

be based on expert written rules [15, 33] or even statisti-

cal data-driven techniques [6, 17, 42]. The tutor could use

the library of specifications as a database to either answer

queries about particular commands or to guide users while

they develop a script.

User support The shell’s user interface shows its age. The

field of HCI seems to neglect the terminal as a relic, but active

research on notebooks holds promise, and innovations in

this domain could port over. Many projects focus on better

interactive shells, at some cost to programmability [23]. Inno-

vation in terminal emulators (like Fig and iTerm2) improve

user experience, too. The historical divide between termi-

nal and shell may no longer be appropriate: for example,

iTerm2 uses a custom protocol of escape codes to munge PS1

and detect prompts. More modern support—like language

servers and structured protocols—will allow better, tighter

integrations between the shell and the terminal. The online

approach proposed in Jash is a natural way to achieve these

integrations.

Formal support Smoosh provides formal support for build-

ing support systems for the shell (B1). Rich command anno-

tations feed back into more robust symbolic execution and

program analysis tools. The JIT optimization subsystem can

be proved correct with respect to Smoosh’s formal semantics

and command annotations. Just as formal work on undefined

behavior in C has supported both tool authors and standards

writers, formal work on the shell promises continued im-

provements in standards and shared understanding.

5 REHABILITATING THE SHELL

Building on recent advances, the shell is a promising area

of research. Neglected for so long, improving the shell will

improve the experience for users of many stripes (develop-

ment, ops, data processing, and novices). The shell warrants

a fresh look from the research community.

Acknowledgments

We want to thank the HotOS reviewers, as well as Benjamin

Pierce, Deepti Raghavan, Diomidis Spinellis, Jiasi Shen, Ju-

lia Lawall, Jürgen Cito, and Michael Schröder. This mate-

rial is based upon work supported by DARPA contract no.

109

Unix Shell Programming: The Next 50 Years HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

HR00112020013 and no. HR001120C0191, and NSF award

CCF 1763514. Any opinions, findings, conclusions, or rec-

ommendations expressed in this material are those of the

authors and do not necessarily reflect those of DARPA or

NSF.

REFERENCES

[1] 2020. Ansible is Simple IT Automation. https://www.ansible.com/

[2] 2020. Chef: Deploy new code faster and more frequent. https:

//www.chef.io/

[3] 2020. Puppet: Powerful infrastructure automation and delive. https:

//puppet.com/

[4] 2021. Dash (Debian Almquist shell). https://git.kernel.org/pub/scm/

utils/dash/dash.git/

[5] Daniel Abadi. 2012. Consistency tradeoffs in modern distributed data-

base system design: CAP is only part of the story. Computer 45, 2
(2012), 37–42.

[6] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.

2018. Learning to Represent Programs with Graphs. In International
Conference on Learning Representations. https://openreview.net/forum?

id=BJOFETxR-

[7] The Austin Group. 2018. POSIX.1 2017: The Open Group Base Specifi-

cations Issue 7 (IEEE Std 1003.1-2008).

[8] Jon Bentley. 1985. Programming Pearls: A Spelling Checker. Commun.
ACM 28, 5 (May 1985), 456–462. https://doi.org/10.1145/3532.315102

[9] Jon Bentley, Don Knuth, and Doug McIlroy. 1986. Programming Pearls:

A Literate Program. Commun. ACM 29, 6 (June 1986), 471–483. https:

//doi.org/10.1145/5948.315654

[10] Pramod Bhatotia, Pedro Fonseca, Umut A Acar, Björn B Brandenburg,

and Rodrigo Rodrigues. 2015. iThreads: A threading library for parallel

incremental computation. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems. 645–659.

[11] Stephen R Bourne. 1978. An introduction to the UNIX shell. Bell

Laboratories. Computing Science.

[12] Frederick P. Brooks, Jr. 1987. No Silver Bullet—Essence and Accidents

of Software Engineering. Computer 20, 4 (April 1987), 10–19. https:

//doi.org/10.1109/MC.1987.1663532

[13] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,

Connor McMahon, and Christopher S Meiklejohn. 2021. Serverless

Workflows with Durable Functions and Netherite. arXiv preprint
arXiv:2103.00033 (2021).

[14] Sebastian Burckhardt, Daan Leijen, Caitlin Sadowski, Jaeheon Yi, and

Thomas Ball. 2011. Two for the Price of One: A Model for Parallel and

Incremental Computation. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and
Applications (Portland, Oregon, USA) (OOPSLA ’11). Association for

Computing Machinery, New York, NY, USA, 427–444. https://doi.org/

10.1145/2048066.2048101

[15] Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng. 2020. Automat-

ically Detecting Risky Scripts in Infrastructure Code. In Proceedings of
the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)

(SoCC ’20). Association for Computing Machinery, New York, NY, USA,

358–371. https://doi.org/10.1145/3419111.3421303

[16] Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ:

Synthesizing Command Repairs from Examples. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (Pader-

born, Germany) (ESEC/FSE 2017). Association for Computing Machin-

ery, New York, NY, USA, 582–592. https://doi.org/10.1145/3106237.

3106241

[17] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and

Ke Wang. 2020. HOPPITY: LEARNING GRAPH TRANSFORMATIONS

TO DETECT AND FIX BUGS IN PROGRAMS. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=

SJeqs6EFvB

[18] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,

Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From

laptop to lambda: Outsourcing everyday jobs to thousands of transient

functional containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 475–488.

[19] Simson Garfinkle, Daniel Weise, and Steven Strassmann. 1994. UNIX-
Hater Handbook. IDG Books Worldwide, Inc.

[20] Wolfgang Gentzsch. 2001. Sun grid engine: Towards creating a com-

pute power grid. In Proceedings First IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid. IEEE, 35–36.

[21] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the

feasibility of consistent, available, partition-tolerantweb services. ACM
SIGACT News 33, 2 (2002), 51–59.

[22] Michael Greenberg. 2018. The POSIX shell is an interactive DSL for

concurrency. https://cs.pomona.edu/~michael/papers/dsldi2018.pdf.

[23] Michael Greenberg. 2018. Word Expansion Supports POSIX Shell Inter-

activity. In Conference Companion of the 2nd International Conference
on Art, Science, and Engineering of Programming (Nice, France) (Pro-
gramming’18 Companion). Association for ComputingMachinery, New

York, NY, USA, 153–160. https://doi.org/10.1145/3191697.3214336

[24] Michael Greenberg and Austin J. Blatt. 2020. Executable Formal Se-

mantics for the POSIX Shell: Smoosh: the Symbolic, Mechanized, Ob-

servable, Operational Shell. Proc. ACM Program. Lang. 4, POPL, Article
43 (Jan. 2020), 31 pages. https://doi.org/10.1145/3371111

[25] Matthew A Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S

Foster. 2014. Adapton: Composable, demand-driven incremental com-

putation. ACM SIGPLAN Notices 49, 6 (2014), 156–166.
[26] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin Ri-

nard. 2020. An Order-aware DataflowModel for Extracting Shell Script

Parallelism. arXiv preprint arXiv:2012.15422 (2020).
[27] Helmut Herold. 1999. Linux-Unix-Shells: Bourne-Shell, Korn-Shell, C-

Shell, bash, tcsh. Pearson Deutschland GmbH.

[28] https://github.com/tomerfiliba/plumbum/graphs/contributors. 2018.

Plumbum: shell combinators. http://plumbum.readthedocs.io/en/latest/

[29] Lluis Batlle i Rossell. 2016. tsp(1) Linux User’s Manual.
https://vicerveza.homeunix.net/ viric/soft/ts/.

[30] Gilles Kahn. 1974. The Semantics of a Simple Language for Parallel

Programming. Information Processing 74 (1974), 471–475.

[31] Gilles Kahn and David B. MacQueen. 1977. Coroutines and Networks

of Parallel Processes. Information Processing 77 (1977), 993–998.

[32] Idan Kamara. 2016. explainshell. http://explainshell.com/

[33] koalaman. 2016. ShellCheck. https://github.com/koalaman/shellcheck/

[34] Butler W Lampson. 2004. Software components: Only the giants

survive. In Computer Systems: Theory, Technology, and Applications.
Springer, 137–146.

[35] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt

Lloyd. 2016. The SNOW Theorem and Latency-Optimal Read-Only

Transactions.. In OSDI. 135–150.
[36] M McIlroy, EN Pinson, and BA Tague. 1978. UNIX Time-Sharing

System. The Bell system technical journal 57, 6 (1978), 1899–1904.
[37] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael

Isard. 2013. Differential Dataflow.. In CIDR.
[38] Sape J Mullender, Guido Van Rossum, AS Tanenbaum, Robbert Van Re-

nesse, and Hans Van Staveren. 1990. Amoeba: A distributed oper-

ating system for the 1990s. Computer 23, 5 (1990), 44–53. https:

//www.cs.cornell.edu/home/rvr/papers/Amoeba1990s.pdf

110

https://www.ansible.com/
https://www.chef.io/
https://www.chef.io/
https://puppet.com/
https://puppet.com/
https://git.kernel.org/pub/scm/utils/dash/dash.git/
https://git.kernel.org/pub/scm/utils/dash/dash.git/
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.1145/3532.315102
https://doi.org/10.1145/5948.315654
https://doi.org/10.1145/5948.315654
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1145/2048066.2048101
https://doi.org/10.1145/2048066.2048101
https://doi.org/10.1145/3419111.3421303
https://doi.org/10.1145/3106237.3106241
https://doi.org/10.1145/3106237.3106241
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://doi.org/10.1145/3191697.3214336
https://doi.org/10.1145/3371111
http://plumbum.readthedocs.io/en/latest/
http://explainshell.com/
https://github.com/koalaman/shellcheck/
https://www.cs.cornell.edu/home/rvr/papers/Amoeba1990s.pdf
https://www.cs.cornell.edu/home/rvr/papers/Amoeba1990s.pdf

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis

[39] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:

Interactive Data Analytics on Cold Data Using Serverless Cloud In-

frastructure. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 115–130.

[40] John K Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N.

Nelson, and Brent B. Welch. 1988. The Sprite network operating

system. Computer 21, 2 (1988), 23–36. http://www.research.ibm.com/

people/f/fdouglis/papers/sprite.pdf

[41] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, et al. 1990.

Plan 9 from Bell Labs. In Proceedings of the summer 1990 UKUUG
Conference. 1–9. http://css.csail.mit.edu/6.824/2014/papers/plan9.pdf

[42] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach

to name-based bug detection. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–25.

[43] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia.

2020. POSH: A Data-Aware Shell. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 617–631. https:

//www.usenix.org/conference/atc20/presentation/raghavan

[44] Ganesan Ramalingam and Thomas Reps. 1993. A categorized bibliog-

raphy on incremental computation. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
502–510.

[45] Chet Ramey. 1994. Bash, the Bourne-Again Shell. In Proceedings of
The Romanian Open Systems Conference & Exhibition (ROSE 1994), The
Romanian UNIX User’s Group (GURU). 3–5.

[46] Olin Shivers. 2018. What’s in a name? https://www.ccs.neu.edu/home/

shivers/papers/whats-in-a-name.html Accessed: 2018-09-27.

[47] Diomidis Spinellis and Marios Fragkoulis. 2017. Extending unix

pipelines to dags. IEEE Trans. Comput. 66, 9 (2017), 1547–1561.
[48] Ole Tange. 2011. GNU Parallel—The Command-Line Power Tool. ;login:

The USENIX Magazine 36, 1 (Feb 2011), 42–47. https://doi.org/10.5281/

zenodo.16303

[49] Nikos Vasilakis, Konstantinos Kallas, KonstantinosMamouras, Achilles

Benetopoulos, and Lazar Cvetković. 2021. PaSh: Light-Touch Data-

Parallel Shell Processing. In Proceedings of the Sixteenth European Con-
ference on Computer Systems (Online Event, United Kingdom) (EuroSys
’21). Association for Computing Machinery, New York, NY, USA, 49–66.

https://doi.org/10.1145/3447786.3456228

[50] Nikos Vasilakis, Ben Karel, and Jonathan M. Smith. 2015. From Lone

Dwarfs to Giant Superclusters: Rethinking Operating System Abstrac-

tions for the Cloud. In Proceedings of the 15th USENIX Conference on
Hot Topics in Operating Systems (Switzerland) (HOTOS’15). USENIX
Association, Berkeley, CA, USA, 15–15. http://dl.acm.org/citation.

cfm?id=2831090.2831105

[51] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg

Thiel. 1983. The LOCUS distributed operating system. In ACM SIGOPS
Operating Systems Review, Vol. 17. Acm, 49–70. http://citeseer.ist.psu.

edu/viewdoc/summary?doi=10.1.1.83.344

[52] Tom White. 2015. Hadoop: The Definitive Guide (4th ed.). O’Reilly

Media, Inc.

[53] Keith Winstein and Hari Balakrishnan. 2012. Mosh: An interactive

remote shell for mobile clients. In 2012 USENIX Annual Technical Con-
ference (USENIX ATC 12). 177–182.

[54] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple

linux utility for resource management. In Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 44–60.

111

http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf
http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf
http://css.csail.mit.edu/6.824/2014/papers/plan9.pdf
https://www.usenix.org/conference/atc20/presentation/raghavan
https://www.usenix.org/conference/atc20/presentation/raghavan
https://www.ccs.neu.edu/home/shivers/papers/whats-in-a-name.html
https://www.ccs.neu.edu/home/shivers/papers/whats-in-a-name.html
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.1145/3447786.3456228
http://dl.acm.org/citation.cfm?id=2831090.2831105
http://dl.acm.org/citation.cfm?id=2831090.2831105
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.344
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.344

	Abstract
	1 Introduction
	1.1 Shouldn't we just replace the shell?
	1.2 Is it really that bad?
	1.3 The shell is actually good

	2 The Good, the Bad, and the Ugly
	2.1 The Good
	2.2 The Bad
	2.3 The Ugly

	3 Enablers
	3.1 Two Recent Enablers
	3.2 A proposal...
	3.3 ...and Enabler

	4 The Future of the Shell
	5 Rehabilitating the shell
	References

