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(First-order) contracts

assert(n≥0)

sqrt : {x:Float | x≥0} → Float

• Specifications 

• Written in code 

• Checked at runtime
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Higher-order contracts

({x:Int | x≥0} → {x:Int | x≥0}) → {y:Int | y≥0}

You give a function f on Nats, I return a Nat
If you don’t get a Nat, oops—you blame me

If f is called with a negative number, oops—you blame me

If f returns a negative, oops—I blame you

“even-odd rule”
—Findler and Felleisen 

2002
3
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Bad space behavior
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Bad space behavior
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Nat → Nat f v)(

Nat (f( Nat v))
My paper: 
a solution!



Function proxies

List
...
head : {l:α list| not (null l)}→α

Set
...
min : {l:α set| not (empty) l}→α
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Function proxies

List

...
head =                                      fun x. …

Set

empty = null  

min =                                         head
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not null → α )(

not empty → α )(



Tail calls

let odd =                   (λn:Int. if (n==0) then false else even (n-1))

let even =                  (λn:Int. if (n==0) then true else odd (n-1))
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What tail calls?

even (      3)
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What tail calls?
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Contracts  
break 

tail calls!

let odd =                   (λn:Int. … even (n-1))

let even =                  (λn:Int. … odd (n-1))

→
→



Bad space behavior

Functional Programming - Tail Calls = Bad News  

• Contracts change asymptotic space behavior
• Big barrier to adoption
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Space-efficient
manifest contracts

a semantics for manifest contracts  
 

checks consume constant space  
 

behave just like classic contracts
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Westward the Course of Empire Takes Its Way 
Emanuel Leutze 



Contracts Made Manifest
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Are 
contracts 

types?

ManifestLatent

yesno

Greenberg, Pierce, and Weirich POPL 2010



Casts

I know e has type T1 

Treat it as type T2 
If I’m wrong, blame ℓ 
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<T1⇒T2>ℓ e



Casts

<T1⇒T2>ℓ e
B ::= Bool | ...
T ::= {x:B | e} | T1→T2
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Casts between refinements

<{x:Int | true}⇒{x:Int | x≥0}>ℓ  7 ⟼* 7
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Casts between refinements

<{x:Int | true}⇒{x:Int | x≥0}>ℓ  7 ⟼* 7

<{x:Int | true}⇒{x:Int | x≥0}>ℓ -1 ⟼* blame ℓ
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Casts between functions

<T1 → T2⇒U1 → U2>ℓ f

...is a value a/k/a function proxy.
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Casts between functions

(<T1 → T2⇒U1 → U2>ℓ f) v ⟼

 <T2⇒U2>ℓ (f (<U1⇒T1>ℓ v))  
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Pop quiz
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<(Nat→Nat)→Nat⇒(Pos→Pos)→Pos>ℓ
When we execute

will we check Nat or Pos
               in the domain’s domain?



Insight #1: use coercions
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<T1⇒T2>ℓ

→



Coercions between 
predicates
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Coercions between 
functions
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Int Nat→

(<{x:Int|true}→{x:Int|true}⇒{x:Int|x≥0}→{x:Int|x≥0}>ℓ f) v
⟼
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Coercions between 
functions
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Makeup exam
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<(Nat→Nat)→Nat⇒(Pos→Pos)→Pos>ℓ
When we execute

Pos→Pos→( )Nat

will we check Nat or Pos
               in the domain’s domain?



Bodies in Urban Spaces 
Willi Dorner / Studio 70 
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Insight #2:  
avoid redundant checks
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blame

blame

Nat 6Even

6

Never fails!

Nat 6EvenNat

Nat 7EvenNat

Nat -1EvenNat

7EvenNat

6Nat
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Redundant checks
• Same color — same check

• Formally: decidable pre-order on refinement types 

• Is this enough?

31



How many checks?
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Eliminating redundant checks

How do we merge lists of checks?
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Merging, in detail

+ =

new old

How do we merge lists of checks?

e e’( )e

Go from new to old  

Drop redundant checks 
on the old coercion
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Merging function checks

40

→ →+ =

Domain: new to old
Codomain: old to new

→

new oldGo from right to left 

Drop redundant checks 

Contravariance



Proofs

41

Lemma [Eidetic canonical forms (A.15)]: If ; `E e : T and
valE e then:

– If T = {x :B | e

0}, then e = k and ty(k) = B and
e

0
[e/x ] �!⇤

E true.
– If T = T21!T22, then either e = �x :T . e

0 or e =

hT11!T12
c1 7!c2) T21!T22i• �x :T11. e

0.

Lemma [Eidetic progress (A.16)]: If ; `E e : T , then either:

1. resultE e , i.e., e = *l or valE e; or
2. there exists an e

0 such that e �!E e

0.

Lemma [Eidetic preservation (A.20)]: If ; `E e : T and e �!E

e

0 then ; `E e

0
: T .

Eidetic �H shares source programs (Definition 3.1) with classic
�H. We can therefore say that classic and eidetic �H are really just
modes of a single language.

Lemma [Source program typing for eidetic �H (A.21)]:
Source programs are well typed in C iff they are well typed in E,
i.e.:

– � `C e : T as a source program iff � `E e : T as a source
program.

– `C T as a source program iff `E T as a source program.
– `C � as a source program iff `E � as a source program.

5. Soundness for space efficiency
We want space efficiency to be sound: it would be space efficient
to never check anything. Classic �H is normative: the more a mode
behaves like classic �H, the “sounder” it is.

A single property summarizes how a space-efficient calculus
behaves with respect to classic �H: cast congruence. In classic
�H, if e1 �!C e2 then hT1

•)T2il e1 and hT1
•)T2il e2 be-

have identically. This cast congruence principle is easy to see,
because E CASTINNERC applies freely. In eidetic �H, however,
E CASTINNER can only apply when E CASTMERGEE doesn’t.
Merged casts may not behave the same as running the two casts
separately. Eidetic �H recovers a complete cast congruence, just
like classic �H has. Diagrammatically:

e1 e2

+

hT1
•)T2il e1 hT1

•)T2il e2

resultE e

E

⇤
E ⇤

E

The proof is in Appendix B, but it is worth observing here that
eidetic �H needs a proof of idempotency to justify the way it uses
reflexivity to eliminate redundant coercions: checking a property
once is as good as checking it twice. Naturally, this property only
holds without state.

Our proofs relating classic �H and eidetic �H are by logical
relations, found in Figure 6. In the extended version, the sound-
ness proofs for all three different space-efficient modes use a single
mode-indexed logical relation. Here we give its restriction to eidetic
�H. As far as alternative techniques go, an induction over evalua-
tion derivations wouldn’t give us enough information about evalua-
tions that return lambda abstractions. Other contextual equivalence
techniques (e.g., bisimulation) would probably work, too.

Value rules e1 ⇠E e2 : T

k ⇠E k : {x :B | e} () ty(k) = B ^ e[k/x ] �!⇤
E true

e11 ⇠E e21 : T1!T2 () valC e1 ^ valE e2 ^
8e12 ⇠E e22 : T1. e11 e12 'E e21 e22 : T2

Term rules e1 'E e2 : T

e1 'E e2 : T

()
✓
e1 �!⇤

C *l ^
e2 �!⇤

E *l

◆
_

0

@
e1 �!⇤

C e

0
1 ^ valC e

0
1 ^

e2 �!⇤
E e

0
2 ^ valE e

0
2 ^

e

0
1 ⇠E e

0
2 : T

1

A

Type rules T1 ⇠E T2

{x :B | e1} ⇠E {x :B | e2} ()
8e01 ⇠E e

0
2 : {x :B | true}. e1[e01/x ] 'E e2[e

0
2/x ] : {x :Bool | true}

T11!T12 ⇠E T21!T22 () T11 ⇠E T21 ^ T12 ⇠E T22

Closing substitutions and open terms � |=E �

� ` e1 'E e2 : T

� |=E � () 8x 2 dom(�). �1(x) ⇠E �2(x) : �(x)

� ` e1 'E e2 : T () 8� |=E �. �1(e1) 'E �2(e2) : T

Figure 6. Blame-exact, symmetric logical relation between classic
�H and eidetic �H

Mode Cast size Pending casts
Classic (m = C) 2Wh + L 1
Eidetic (m = E) s2

L+W
B |e|

Table 1. Space efficiency of �H

Lemma [Similar casts are logically related (B.3)]: If T1 ⇠E T

0
1

and T2 ⇠E T

0
2 and e1 ⇠E e2 : T1, then hT1

•)T2il e1 'E

hT 0
1

•)T

0
2il e2 : T2.

Lemma [Relating classic and eidetic source programs (B.4)]:

1. If � `C e : T as a source program then � ` e 'E e : T .
2. If `C T as a source program then T ⇠E T .

6. Bounds for space efficiency
We have claimed that eidetic �H is space efficient: what do we
mean? What sort of space efficiency have we achieved? We sum-
marize the results in Table 1; proofs are in Appendix C. From a
high level, there are only a finite number of types that appear in
our programs, and this set of types can only reduce as the program
runs. We can effectively code each type in the program as an inte-
ger, allowing us to efficiently run the � predicate.

Suppose that a type of height h can be represented in Wh bits
and a label in L bits. (Type heights are defined in Figure 7 in
Appendix C.) Casts in classic �H each take up 2Wh + L bits: two
types and a blame label. Coercions in eidetic �H have a different
form: the only types recorded are those of height 1, i.e., refinements
of base types. Pessimistically, each of these may appear at every
position in a function coercion c1 7! c2. We use s to indicate the
“size” of a function type, i.e., the number of positions it has. As
a first pass, a set of refinements and blame labels take up 2

L+W1

space. But in fact these coercions must all be between refinements

Soundness Congruence lemma

Classic semantics 
and  

space-efficient semantics 
behave identically
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e e’

e’’

e e’
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e1 e1’

e’’

e1’e1( ) ( )

Our step: 
check 



Congruence lemma

44

e1 e1’

e’’

e1’e1( ) ( )

e1 e1’

Our step: 
check 
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Types:

• Use coercions, not casts

• Merge redundant checks

+ =



Outlook
• Can we scale to dependency?
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Types:
+ =

• Simple types—finite number

• Dependent types—infinite 
number



Outlook
• Can we scale to dependency and effects?
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• Idea: partial orders/lattices

+ =

≤ 5

≤ 6

≤ 7

≤ 8

≤ 9

keep 
lowest 
check

≤ xx: →
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